• Title/Summary/Keyword: High velocity oxygen fuel

Search Result 56, Processing Time 0.036 seconds

An Experimental and Numerical Study on the Oxy-MILD Combustion at Pilot Scale Heating Capacity (Pilot급 산소 MILD 연소에 관한 실험 및 수치해석적 연구)

  • Cha, Chun-Loon;Lee, Ho-Yeon;Hwang, Sang-Soon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.7
    • /
    • pp.275-282
    • /
    • 2016
  • MILD (Moderate and Intense Low-oxygen Dilution) combustion using oxygen as an oxidizer is considered as one of the most promising combustion technologies for high energy efficiency and for reducing nitrogen oxide and carbon dioxide emissions. In order to investigate the effects of nozzle angle and oxygen velocity conditions on the formation of oxygen-MILD combustion, numerical and experimental approaches were performed in this study. The numerical results showed that the recirculation ratio ($K_V$), which is an important parameter for performing MILD combustion, was increased in the main reaction zone when the nozzle angle was changed from 0 degrees to 15 degrees. Also, it was observed that a low and uniform temperature distribution was achieved at an oxygen velocity of 400 m/s. The perfectly invisible oxy-MILD flame was observed experimentally under the condition of a nozzle angle of $10^{\circ}$ and an oxygen velocity of 400 m/s. Moreover, the NOx emission limit was satisfied with NOx regulation of less than 80 ppm.

The effect of fuel/oxygen jet impingement on MILD combustion (연료/산소 Jet Impingement에 의한 MILD 연소)

  • Lee, Ho Yeon;Cha, Chun Loon;Lee, Pil Hyong;Hwang, Sang Soon;Lee, Sung Ho;Yoo, In
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.309-311
    • /
    • 2015
  • The MILD(Moderate or Intense Low-oxygen Dilution) combustion has been considered as one of the promising combustion technology for high thermal efficiency and low emissions. In this paper, the effect of fuel oxygen impingement on formation of MILD combustion was analyzed using numerical simulation. This investigation was simulated under the thermal intensity $0.04MW/m^3$ and equivalence ratio 0.91. The results show that the temperature distribution was become relatively uniform and the amount of CO emission was decreased as the increase of oxygen jet velocity and impinging angle.

  • PDF

Evaluation of Cavitation Characteristics in Seawater on HVOF Spray Coated Layer with WC-27NiCr Material for Cu Alloy (구리합금에 대한 WC-27NiCr 초고속화염용사 코팅층의 해수내 캐비테이션 특성 평가)

  • Han, Min-Su;Kim, Min-Sung;Jang, Seok-Ki;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.263-269
    • /
    • 2012
  • Copper alloys are commonly applied to ship's propellers, pumps and valves which are serviced in seawater due to their good castability and corrosion resistance. In the environment of high flow velocity, however, erosion damage predominates over corrosion damage. In particular, the cavitation in seawater environment accelerates surface damage to copper alloys, resulting in degradation of products and economic losses and also threatening safety. The surface was coated with WC-27NiCr by high velocity oxygen fuel(HVOF) spraying technique to attain durability and cavitation resistance of copper alloys under high velocity/pressure flow. The cavitation test was performed for the WC-27NiCr coating deposited by HVOF in seawater at the amplitude of $30{\mu}m$ with seawater temperature. The cavitation at $15^{\circ}C$ caused exfoliation of the coating layer in 17.5 hours while that of $25^{\circ}C$ caused the exfoliation in 12.5 hours. When the temperature of seawater was elevated to $25^{\circ}C$ from $15^{\circ}C$, more damage was induced by over 160%. Although WC-27NiCr has good durability, corrosion resistance and eletrochemical stability, the cavitation damage rate of the coating layer could remarkably increase at the elevated temperatures under cavitation environments.

A Study on Characteristics of Durability for Plunger of High Speed and Ultra-High Pressure Reciprocating Pump Using High Velocity Oxygen Fuel Spraying (초고속 용사 적용 고속 초고압 왕복동 펌프 플런저의 내구성 특성에 관한 연구)

  • Bae, Myung-Whan;Park, Byoung-Ho;Jung, Hwa;Park, Hui-Seong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.20-28
    • /
    • 2014
  • The high velocity oxygen fuel spraying (HVOF) is a kind of surface modification process technology to form the sprayed coating layer after spraying the powder to molten or semi-molten state by the ultra-high speed at the high-temperature heat source and conflicting with a substrate. It is desirable to melt completely the thermal spray powder in order to produce the coating layer with an optimal adhesion, however, because a semi-molten powder in a spray process has the low efficiency and become a factor that degrades the mechanical property by the inducement of pore-forming within the coating layer. To improve the wear resistance, corrosion resistance and heat resistance, in this study, the plungers of high-speed and ultra-high pressure reciprocating hydraulic pumps for oil and water used in ironwork are produced with $420J_2$ and the coating layers of plungers are formed by the powders of WC-Co-Cr and WC-Cr-Ni including the high hardness WC. The surface of these plungers is modified by the super-mirror face grinding machine using variable air pressure developed in this laboratory, and then the characteristics of cross-sectional microstructure, and surface roughness and hardness values between no operation and 100 days-operation are examined and made a comparison. The fine tops and bottoms on surface roughness curve of oil-hydraulic pump plunger sprayed by WC-Cr-Ni are molded more and higher than those of water-hydraulic pump sprayed by WC-Co-Cr because the plunger diameter of oil-hydraulic pump is 0.4 times smaller than that of water-hydraulic pump and the pressure of oil-hydraulic pump exerted on the plunger is operated with the 70 bars higher than that of water-hydraulic pump. As a result, it is found that the values of centerline average surface roughness and maximum height for oil-hydraulic pump plunger are bigger than those of water-hydraulic pump plunger.

A Study on Durability Characteristics for Plungers of Conventional Ceramic and Surface Modification by Powder Coating Using High Velocity Oxygen Fuel Thermal Spray (기존 세라믹 및 초고속 용사 분말피막 표면개질 플런저의 내구성 특성에 관한 연구)

  • Bae, Myung-whan;Park, Byoung-ho;Jung, Hwa
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.285-293
    • /
    • 2016
  • The high velocity oxygen fuel(HVOF) thermal spray is a kind of surface modification techniques to produce the sprayed coating layer. This process is to form the coating layer after spraying the powder to molten or semi-molten state by the ultra-high speed at the high-temperature heat source and conflicting with a substrate. The efficiency of thermal spraying is dropped, however, because the semi-molten powder in a spray process become a factor that degrades the mechanical property by the formed pore within the coating layer. Therefore, it is necessary to melt completely the thermal spray powder in order to produce the coating layer with an optimal adhesive force. In this study, to improve the wear resistance, corrosion resistance and heat resistance, the plungers of high-speed and ultra-high pressure reciprocating hydraulic pumps used in ironworks are manufactured with STS $420J_2$ and are coated by the powders of WC-Co-Cr and WC-Cr-Ni including the WC of high hardness using a HVOF thermal sprayer developed in this laboratory. These are called by the surface-modified plungers. The surface roughness, hardness, and surface and cross-sectional microstructure of these two surface-modified and conventional ceramic plungers are measured and compared before operation with after operation for 100 days. It is found that the values of centerline average surface roughness and maximum height for conventional ceramic plunger are 9.5 to 10.8 and 5.2 to 5.7 times higher than those of surface-modified ones coated by WC-Co-Cr and WC-Cr-Ni because the fine tops and bottoms on surface roughness curve of conventional ceramic plunger are approximately 100 times higher than those of surface-modified ones. In addition, the pores and scratches in the surface microstructure are considerably formed in the order of conventional ceramic, WC-Cr-Ni and WC-Co-Cr surface-modified plungers. The greater the WC content of high hardness powder is less the change in the plunger surface.

Behaviors of Cavitation Damage in Seawater for HVOF Spray Coated Layer with WC-10Co4Cr on Cu Alloy (WC-10Co4Cr으로 초고속 화염용사 코팅된 Cu 합금의 해수내 캐비테이션 손상 거동)

  • Han, Min-Su;Kim, Min-Sung;Jang, Seok-Ki;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.6
    • /
    • pp.264-271
    • /
    • 2012
  • Due to the good corrosion resistance and machinability, copper alloy is commonly employed for shipbuilding, hydroelectric power and tidal power industries. The Cu alloy, however, has poor durability, and the seawater application at fast flow condition becomes vulnerable to cavitation damage leading to economic loss and risking safety. The HVOF(High Velocity Oxygen Fuel) thermal spray coating with WC-10Co4Cr were therefore introduced as a replacement for chromium or ceramic to minimize the cavitation damage and secure durablility under high-velocity and high-pressure fluid flow. Cavitation test was conducted in seawater at $15^{\circ}C$ and $25^{\circ}C$ with an amplitude of $30{\mu}m$ on HVOF WC-10Co4Cr coatings produced by thermal spray. The cavitation at $15^{\circ}C$ and $25^{\circ}C$ exposed the substrate in 12.5 hours and in 10 hours, respectively. Starting from 5 hours of cavitation, the coating layer continued to show damage by higher than 160% over time when the temperature of seawater was elevated from $15^{\circ}C$ to $25^{\circ}C$. Under cavitation environment, although WC-10Co4Cr has good wear resistance and durability, increase in temperature may accelerate the damage rate of the coating layer mainly due to cavitation damage.

Friction Behavior of High Velocity Oxygen Fuel (HVOF) Thermal Spray Coating Layer of Nano WC-Co Powder

  • Cho, T.Y.;Yoon, J.H.;Kim, K.S.;Fang, W.;Joo, Y.K.;Song, K.O.;Youn, S.J.;Hwang, S.Y.;Chun, H.G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.4
    • /
    • pp.170-174
    • /
    • 2007
  • High Velocity Oxygen Fuel (HVOF) thermal spray coating of nano size WC-Co powder (nWC-Co) has been studied as one of the most promising candidate for the possible replacement of the traditional hard plating in some area which causes environmental and health problems. nWC-Co powder was coated on Inconel 718 substrates by HVOF technique. The optimal coating process obtained from the best surface properties such as hardness and porosity is the process of oxygen flow rate (FR) 38 FMR, hydrogen FR 57 FMR and feed rate 35 g/min at spray distance 6 inch for both surface temperature $25^{\circ}C\;and\;500^{\circ}C$. In coating process a small portion of hard WC decomposes to less hard $W_2C$, W and C at the temperature higher than its decomposition temperature $1,250^{\circ}C$ resulting in hardness decrease and porosity increase. Friction coefficient increases with increasing coating surface temperature from 0.55-0.64 at $25^{\circ}C$ to 0.65-0.76 at $500^{\circ}C$ due to the increase of adhesion between coating and counter sliding surface. Hardness of nWC-Co is higher or comparable to those of other hard coatings, such as $Al_2O_3,\;Cr,\;Cr_2O_3$ and HVOF Tribaloy 400 (T400). This shows that nWC-Co is recommendable for durability improvement coating on machine components such as high speed spindle.

Effect of High Frequency Heat Treatment on the Microstructure and Wear Properties of Ni based Self Fluxing Composite Coating Layer Manufactured by HVOF Spray Process (High Velocity Oxygen Fuel 공정으로 제조된 Ni 계 자용성 복합 코팅 소재의 미세조직과 마모 특성에 미치는 고주파 열처리의 영향)

  • Wi, Dong-Yeol;Ham, Gi-Su;Park, Sun-Hong;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.26 no.5
    • /
    • pp.421-431
    • /
    • 2019
  • In this study, the formation, microstructure, and wear properties of Colmonoy 88 (Ni-17W-15Cr-3B-4Si wt.%) + Stellite 1 (Co-32Cr-17W wt.%) coating layers fabricated by high-velocity oxygen fuel (HVOF) spraying are investigated. Colmonoy 88 and Stellite 1 powders were mixed at a ratio of 1:0 and 5:5 vol.%. HVOF sprayed self-fluxing composite coating layers were fabricated using the mixed powder feedstocks. The microstructures and wear properties of the composite coating layers are controlled via a high-frequency heat treatment. The two coating layers are composed of ${\gamma}-Ni$, $Ni_3B$, $W_2B$, and $Cr_{23}C_6$ phases. Co peaks are detected after the addition of Stellite 1 powder. Moreover, the WCrB2 hard phase is detected in all coating layers after the high-frequency heat treatment. Porosities were changed from 0.44% (Colmonoy 88) to 3.89% (Colmonoy 88 + ST#1) as the content of Stellite 1 powder increased. And porosity is denoted as 0.3% or less by inducing high-frequency heat treatment. The wear results confirm that the wear property significantly improves after the high-frequency heat treatment, because of the presence of well-controlled defects in the coating layers. The wear surfaces of the coated layers are observed and a wear mechanism for the Ni-based self-fluxing composite coating layers is proposed.

Development of Amorphous Iron Based Coating Layer using High-velocity Oxygen Fuel (HVOF) Spraying (철계 비정질 분말을 활용한 초고속 용사 코팅층 개발)

  • Kim, Jungjoon;Kim, Song-Yi;Lee, Jong-Jae;Lee, Seok-Jae;Lim, Hyunkyu;Lee, Min-Ha;Kim, Hwi-Jun;Choi, Hyunjoo
    • Journal of Powder Materials
    • /
    • v.28 no.6
    • /
    • pp.483-490
    • /
    • 2021
  • A new Fe-Cr-Mo-B-C amorphous alloy is designed, which offers high mechanical strength, corrosion resistance as well as high glass-forming ability and its gas-atomized amorphous powder is deposited on an ASTM A213-T91 steel substrate using the high-velocity oxygen fuel (HVOF) process. The hybrid coating layer, consisting of nanocrystalline and amorphous phases, exhibits strong bonding features with the substrate, without revealing significant pore formation. By the coating process, it is possible to obtain a dense structure in which pores are hardly observed not only inside the coating layer but also at the interface between the coating layer and the substrate. The coating layer exhibits good adhesive strength as well as good wear resistance, making it suitable for coating layers for biomass applications.

An analysis of the Wi-Ni Carbide Alloy Diffusion Bonding technique in its application for DME Engine Fuel Pump

  • Chun, Dong-Joon
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.246-251
    • /
    • 2020
  • Dimethyl Ether(DME) engine use a highly efficient alternative fuel having a great quantity of oxygen and has a advantage no polluting PM gas. The existing DME fuel cam material is a highly expensive carbide alloy, and it is difficult to take a price advantage. Therefore the study of replacing body area with inexpensive steel material excluding piston shoe and contact area which demands high characteristics is needed. The development of WC-Ni base carbide alloy optimal bonding composition technique was accomplished in this study. To check out the influence of bonding temperature and time, bonding characteristics of sintering temperature was experimented. The hardness of specimen and bonding rate were measured using ultrasound equipment. The bonding state of each condition was excellent, and the thickness of mid-layer, temperature and maintaining time were measured. The mid-layer thickness according to bonding temperature and maintaining time were observed with optical microscope. We analyzed the micro-structural analysis, formation of bonding specimen, wafer fabrication and fuel cam abrasion test. Throughout this study, we confirmed that the fuel cam for DME engine which demands high durability against velocity and pressure is excellent.