• Title/Summary/Keyword: High vacuum chemical vapor deposition

Search Result 214, Processing Time 0.025 seconds

Chemical Vapor Deposition of Silicon Carbide Thin Films Using the Single Precursor 1,3-Disilabutane

  • Lee, Kyung-Won;Boo, Jin-Hyo;Yu, Kyu-Sang;Kim, Yunsoo
    • The Korean Journal of Ceramics
    • /
    • v.3 no.3
    • /
    • pp.177-181
    • /
    • 1997
  • Epitaxial films of cubic silicon carbide (3C-SiC, $\beta$-SiC) have been grown on Si(001) and Si(111) substrates by high vacuum chemical vapor deposition using the single precursor 1,3-disilabutane, $H_3SiCH_2SiH_2CH_3$, at temperatures 900~$100^{\circ}C$. The advantage of using the single precursor over the covnentional chemical vapor deposition is evident in that the source chemical is safe to handle, carbonization of the substrates is not necessary, accurate stoichiometry of the silicon carbide films is easily achieved, and the deposition temperature is much lowered. The films were characterized by XPS, XRD, SEM, RHEED, RBS, AES, and TED.

  • PDF

High indium incorporation in the growth of InGaAs on (100) GaAs by precursor alternating metalorganic chemical vapor deposition (Precursor alternating metalorganic chemical vapor deposition에 의한 (100) GaAs 기판위로의 InGaAs 성장시의 높은 indium 유입)

  • 정동근
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.4
    • /
    • pp.354-358
    • /
    • 1996
  • High indium incorporation was observed in InGaAs growth by precursor alternating metalorganic chemical vapor deposition (PAMOCVD). A possible mechanism of high indium incorporation into the crystal in PAMOCVD was proposed by considering the decomposition products of gallium and indium precursors, and thus the different adsorption behavior of the decomposed precursor molecules.

  • PDF

Characterization of Low-Temperature Graphene Growth with Plasma Enhanced Chemical Vapor Deposition

  • Ma, Yifei;Kim, Dae-Kyoung;Xin, Guoqing;Chae, Hee-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.421-421
    • /
    • 2012
  • Graphene has drawn enormous attention owing to its outstanding properties, such as high charge mobility, excellent transparence and mechanical property. Synthesis of Graphene by chemical vapor deposition (CVD) is an attractive way to produce large-scale Graphene on various substrates. However the fatal limitation of CVD process is high temperature requirement(around $1,000^{\circ}C$), at which many substrates such as Al substrate cannot endure. Therefore, we propose plasma enhanced CVD (PECVD) and decrease the temperature to $400^{\circ}C$. Fig. 1 shows the typical structure of RF-PECVD instrument. The quality of Graphene is affected by several variables. Such as plasma power, distance between substrate and electronic coil, flow rate of source gas and growth time. In this study, we investigate the influence of these factors on Graphene synthesis in vacuum condition. And the results were checked by Raman spectra and conductivity measurement.

  • PDF

Effect of the Neutral Beam Energy on Low Temperature Silicon Oxide Thin Film Grown by Neutral Beam Assisted Chemical Vapor Deposition

  • So, Hyun-Wook;Lee, Dong-Hyeok;Jang, Jin-Nyoung;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.253-253
    • /
    • 2012
  • Low temperature SiOx film process has being required for both silicon and oxide (IGZO) based low temperature thin film transistor (TFT) for application of flexible display. In recent decades, from low density and high pressure such as capacitively coupled plasma (CCP) type plasma enhanced chemical vapor deposition (PECVD) to the high density plasma and low pressure such as inductively coupled plasma (ICP) and electron cyclotron resonance (ECR) have been used to researching to obtain high quality silicon oxide (SiOx) thin film at low temperature. However, these plasma deposition devices have limitation of controllability of process condition because process parameters of plasma deposition such as RF power, working pressure and gas ratio influence each other on plasma conditions which non-leanly influence depositing thin film. In compared to these plasma deposition devices, neutral beam assisted chemical vapor deposition (NBaCVD) has advantage of independence of control parameters. The energy of neutral beam (NB) can be controlled independently of other process conditions. In this manner, we obtained NB dependent high crystallized intrinsic and doped silicon thin film at low temperature in our another papers. We examine the properties of the low temperature processed silicon oxide thin films which are fabricated by the NBaCVD. NBaCVD deposition system consists of the internal inductively coupled plasma (ICP) antenna and the reflector. Internal ICP antenna generates high density plasma and reflector generates NB by auger recombination of ions at the surface of metal reflector. During deposition of silicon oxide thin film by using the NBaCVD process with a tungsten reflector, the energetic Neutral Beam (NB) that controlled by the reflector bias believed to help surface reaction. Electrical and structural properties of the silicon oxide are changed by the reflector bias, effectively. We measured the breakdown field and structure property of the Si oxide thin film by analysis of I-V, C-V and FTIR measurement.

  • PDF

Graphene Synthesized by Plasma Enhanced Chemical Vapor Deposition at Low-Temperature

  • Ma, Yifei;Kim, Dae-Kyoung;Xin, Guoqing;Chae, Hee-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.248-248
    • /
    • 2012
  • Synthesis graphene on Cu substrate by plasma-enhanced chemical vapor deposition (PE-CVD) is investigated and its quality's affection factors are discussed in this work. Compared with the graphene synthesized at high temperature in chemical vapor deposition (CVD), the low-temperature graphene film by PE-CVD has relatively low quality with many defects. However, the advantage of low-temperature is also obvious that low melting point materials will be available to synthesize graphene as substrate. In this study, the temperature will be kept constant in $400^{\circ}C$ and the graphene was grown in plasma environment with changing the plasma power, the flow rate of precursors, and the distance between plasma generator coil and substrates. Then, we investigate the effect of temperature and the influence of process variables to graphene film's quality and characterize the film properties with Raman spectroscopy and sheet resistance and optical emission spectroscopy.

  • PDF

Large Area Bernal Stacked Bilayer Graphene Grown by Multi Heating Zone Low Pressure Chemical Vapor Deposition

  • Han, Jaehyun;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.239.2-239.2
    • /
    • 2015
  • Graphene is a most interesting material due to its unique and outstanding properties. However, semi-metallic properties of graphene along with zero bandgap energy structure limit further application to optoelectronic devices. Recently, many researchers have shown that band gap can be induced in the Bernal stacked bilayer graphene. Several methods have been used for the controlled growth of the Bernal staked bilayer graphene, but it is still challenging to control the growth process. In this paper, we synthesize the large area Bernal stacked bilayer graphene using multi heating zone low pressure chemical vapor deposition (LPCVD). The synthesized bilayer graphenes are characterized by Raman spectroscopy, optical microscope (OM), scanning electron microscopy (SEM). High resolution transmission electron microscopy (HRTEM) is used for the observation of atomic resolution image of the graphene layers.

  • PDF

USE OF SINGLE PRECURORS FOR THE PREP ARATION OF SILICON CARBIDE FILMS

  • Lee, Kyunf-Won;Yu, Kyu-Sang;Kim, Yun-Soo
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.467-473
    • /
    • 1996
  • Heteroepitaxial growth of cubic silicon carbide films on Si(001) and Si(111) substrates at temperatures 900-$1000^{\circ}C$ has been achieved by high vacuum chemical vapor deposition using the single precursor 1, 3-disilabutane without carrying out the carbonization process of the substrate surfaces. The deposition temperature range is much lowered compared with conventiontional chemical vapor deposition where separate sources for silicon and carbon are employed. The deposition procedure is quite simple and safe. The qualities of the films were found to be very good judging from the results obtained by various characterization techniques including reflection high energy electron diffraction, X-ray diffraction, X-ray pole figure analysis, Rutherford backscattering spectrometry, Auger depth profiling, and transmission electron diffraction.

  • PDF

Chemical Vapor Deposition of β-LiGaO2 Films on Si(100) Using a Novel Single Precursor

  • Sung, Myung M.;Kim, Chang G.;Kim, Yun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.480-484
    • /
    • 2004
  • $LiGaO_2$ films have been grown on Si (100) substrates using a new single precursor $[Li(OCH_2CH_2OCH_3)_2-Ga(CH_3)_2]_2$ under high vacuum conditions $(5{\times}10^{-6}Torr)$. The $[Li(OCH_2CH_2OCH_3)_2Ga(CH_3)_2]_2$ was synthe-sized and characterized by using spectroscopic methods and single-crystal X-ray diffraction analysis. The chemical composition, crystalline structure, and morphology of the deposited films were investigated by X-ray photoelectron spectroscopy, X-ray diffraction, and scanning electron microscopy. The results show that polycrystalline $LiGaO_2$ films preferentially oriented in the [010] direction can be deposited on Si (100) at 500-550$^{\circ}C$ by metal organic chemical vapor deposition (MOCVD). The single precursor $[LiOCH_2CH_2OCH_3)_2-Ga(CH_3)_2]_2$ has been found suitable for chemical vapor deposition of $LiGaO_2$ thin films on Si substrates.