• Title/Summary/Keyword: High torque

Search Result 1,687, Processing Time 0.035 seconds

Optimum Geometric and Electrical Parameter for Minimization Torque Ripple of Switched Reluctance Motor (스위치드 릴럭턴스 전동기의 토오크 리플 저감을 위한 기하학적인 파라미터와 전기적인 파라미터의 최적화)

  • Choi, Jae-Hak;Kim, Sol;Lee, Kab-Jae;Lee, Ju;Hong, Kyung-Jin;Choi, Dong-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.3
    • /
    • pp.93-100
    • /
    • 2003
  • Switched reluctance motor(SRM) has some advantages such as low cost, high torque density but SRM has essentially high torque ripple due to its salient structure. In order to apply SRM to industrial field, torque ripple has to be reduced. This paper introduces optimal design process of SRM using an optimization algorithm of Progressive Quadratic Response Surface Modeling(PQRSM) and two-dimensional(2D) Finite Element Method(FEM). The electrical and geometrical design parameters have been adopted as 2D design variables. From this work, it can be obtained both the optimal design minimized torque ripple and the optima1 design maximized the average torque, respectively. Finally, this Paper Presents Performance comparison of two optimal designs and consider influence of the selected design variables in torque characteristics.

Adaptive Neuro-Fuzzy Ingerence based Torque Model of SRM (적응 뉴로퍼지 추론기법에 의한 SRM의 토오크모델)

  • 홍정표;박성준;홍순일;김철우
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.279-284
    • /
    • 1999
  • Although the switched reluctance motor (SRM) has a several advantages such as simple magnetic structure, robustness, wide range of speed characteristics and simple driving, it has a considerable inherent torque ripple and speed variation duet to the driving characteristics of pulse current waveform and the nonlinear inductance profile. The high torque ripple and speed variation inhibits wide application. The minimization of the torque ripple is very important in high performance servo drive applications, which require smooth operation with minimum torque pulsations. This paper presents the new SRM torque modeling technique for the control of instantaneous torque. The SRM is modeled by the database of torque profiles for every small variation in currents and rotor angles, which is inferred from the several measured data by the adaptive neuro-fuzzy inference technique. Simulation results demonstrating the effectiveness of proposed torque modeling technique are presented.

  • PDF

Joint disturbance torque analysis for robots and its application in straight line path placement (로봇의 관절외란해석을 이용한 직선궤적 위치결정)

  • ;Choi, Myuoung Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1824-1827
    • /
    • 1997
  • Majority of industrial robots are controlled by a simple joint servo control of joint actuators. In this type of control, the performance of control is influenced greatly by the joint interaction torques including Coriolis and centrifugal forces, which act as disturbance torques to the control system. As the speed of the robot increases, the effect of this disturbance torque increases, and makes the high speed-high precision control more difficult to achieve. In this paper, the joint disturbance torque of robots is analyzed. The joint disturbance torque is defined using the coefficients of dynamic equation of motion, and for the case of a 2DOF planar robot, the conditions for the maximum joint disturbance torques are identified, and the effect of link parameters and joint variables on the joint disturbance torque are examined. Then, a solutioin to the optimal path placement problem is proposed that minimizes the joint disturbance torque are examined. then, a solution to the optimal path placement problem is proposed that minimizes the joint disturbance torque during a straight line motion. the proposed method is illustrated using computer simulation. the proposed solution method cna be applied to the class of robots that are controlled by independent joint sevo control, which includes the vast majority of industrial robots. By minimizing the joint disturbacne torque during the motion, the simple joint servo controlled robot can move with improved path tracking accuracy at high speed.

  • PDF

Optimal Shape Deign of a High Speed Switched Reluctance Motor Vsing Fuzzy Set Theory (퍼지 이론을 이용한 고속 회전용 스위치드 리럭턴스 모터의 형상 최적 설계)

  • Choi, Chang-Hwan;Yoo, Jae-Sun;Park, Kyi-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.10
    • /
    • pp.659-664
    • /
    • 2000
  • This paper presents a new design method for improving the torque performance of a switched reluctance motor (SRM) for high speed applications. The drawback of the conventional design method based on the overall static average torque maximization is that the torque control performance is degraded at high speed. On the other hand, the proposed method optimizes the torque profile by diving it into several regions so that it is suitable for high speed operation. This multi-objective optimization problem is solved by using a fuzzy optimization algorithm which incorporates a finite element method. The torque performance of the motor for various speed ranges is investigated and the optimally designed motor show a better performance at high speed.

  • PDF

Influence of Walking With High-Heeled Shoes on the Knee Joint of Obese Women (하이힐 보행이 비만여성의 슬관절에 미치는 영향)

  • Chang, Yun-Hee;Lee, Wan-Hee
    • Physical Therapy Korea
    • /
    • v.14 no.3
    • /
    • pp.23-31
    • /
    • 2007
  • The purpose of this study was to determine the influence of high-heeled shoes on walking of obese women as it was already proven an extrinsic factor of knee osteoarthritis in women with normal weight. In this study the aimed therefore in particular was to utilize high-heeled shoes in proving it's causal influence on knee osteoarthritis by measuring the angle and torque of the knee joint. Fifteen obese women (BMI>25 $kg/m^2$) were measured in their twenties. Each angle and torque of their knee joints during walking on 6.5 cm high-heeled shoes and with a bare feet, were compared with each other and analyzed with a 3D motion analysis system. There was no significant difference in walking speed, cadence and stride length between the two conditions. However, there was a significant increase in a double limb support time and the stance phase when walking on high-heeled shoes as when walking with bare feet. The peak knee flexion angle and peak knee varus torque was higher when walking on high-heeled shoes than with bare feet. On the contrary, the peak knee flexion angle in the swing phase was not statistically different. The prolongation of peak knee varus torque was also proven. There was a significant increase in peak knee varus torque in the initial and last stance phases during walking on high-heeled shoes as compared to walking on bare feet. Through the above results, it was proven that when obese women walked on high-heeled shoes, rather than with bare feet, peak knee flexor and varus torque increased along with the changes of the in knee joint angle. Therefore, the influence of high-heeled shoes might be a significant intrinsic factor in knee osteoarthritis of obese women.

  • PDF

Direct Instantaneous Torque Control of Hydraulic Oil Pump System (유압펌프시스템의 직접 순시 토오크 제어)

  • Liang, Jianing;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.150-151
    • /
    • 2007
  • In hydraulic oil pump system, pressure has a linear relationship with output torque of motor. Torque control of pump drive can easily output stable pressure, and it can retain required pressure at minimum speed to save power consumption. Switched reluctance motor(SRM) has many advantages such as low cost and low inertia. It can generate high torque at low speed. But inherent high torque ripple of SRM influences performance of pressure control in hydraulic oil system. This paper presents direct instantaneous torque control(DITC) of hydraulic oil pump system. DITC method can reduce inherent torque ripple of SRM, and output smoothing torque to load. So the proposed hydraulic oil pump system can support smooth pressure and fast dynamic power supply to the hydraulic pump system. At last the proposed hydraulic oil pump system is verified by computer simulation and experimental results.

  • PDF

Direct Torque Control System of a Reluctance Synchronous Motor Using a Neural Network

  • Kim Min-Huei
    • Journal of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.36-44
    • /
    • 2005
  • This paper presents an implementation of high performance control of a reluctance synchronous motor (RSM) using a neural network with a direct torque control. The equivalent circuit in a RSM, which considers iron losses, is theoretically analyzed. Also, the optimal current ratio between torque current and exiting current is analytically derived. In the case of a RSM, unlike an induction motor, torque dynamics can only be maintained by controlling the flux level because torque is directly proportional to the stator current. The neural network is used to efficiently drive the RSM. The TMS320C3l is employed as a control driver to implement complex control algorithms. The experimental results are presented to validate the applicability of the proposed method. The developed control system shows high efficiency and good dynamic response features for a 1.0 [kW] RSM having a 2.57 ratio of d/q.

Analysis of the Magnetic Force and Torque of a Rotatory Two-Phase Transverse Flux Machine (회전형 이상 횡자속형 전동기에서 발생하는 자기력 및 토크 해석)

  • Park, Nam-Ki;Chang, Jung-Hwan;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.829-835
    • /
    • 2006
  • Rotatory two-phase transverse flux machine(TFM) is a relatively new type of motor with high power density, high torque, and low speed in comparison to conventional electrical motors. However, it has some shortcomings,.i.e. complex construction and high possibility of the magnetically induced vibration due to its inherent structure. This paper investigates the characteristics of the magnetic force and the torque in the rotatory two-phase TFM by using the 3-D finite element method and the spectral analysis. This research shows that the average torque decreases and that the torque ripple increases as the phase delay increases. It also shows that the unbalanced magnetic force is one of the dominant excitation forces in this machine. And it proposes a new topology of rotatory two-phase TFM to eliminate the unbalanced magnetic force.

  • PDF

Torque ripple reduction in DTC of induction motor driven by 3-level inverter with low switching frequency (3레벨 인버터로 구동되는 유도전동기 직접토크제어의 낮은 스위칭 주파수에서의 토크 리플 저감법)

  • 송중호
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.203-206
    • /
    • 2000
  • This paper presents a torque ripple reduction technique of direct torque control(DTC) for high power induction motors driven by 3-level inverters with the inverter switching frequency limited around 0.5-1kHz level. It is noted that conventional DTC algorithms to reduce torque ripple are devised for applications with relatively high switching frequency above 2-3kHz. A new DTC algorithms especially for low switching frequency inverter system illustrates relatively reduced torque ripple are devised for applications with relatively high switching frequency above 2-3kHz. Anew DTC algorithm especially for low switching frequency inverter system illustrates relatively reduced torque ripple characteristics Simulation and experimental results show the effectiveness of the proposed control algorithm

  • PDF

A Study on Tapping Torque in High Speed Tapping (고속탭핑에 있어서 절삭토크에 관한 연구)

  • 최만성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3195-3201
    • /
    • 1994
  • In order to analytically predict tapping torque and thrust force in high speed tapping, a cutting model for main cutting edge with a uniformly restricted tool-chip contact area were developed. From this model equations are derived for the prediction of tapping torque given the cutting conditions, tap geometry, and an empirical factor which is related to the workmaterial. Computed values of torque is shown to compare favorably with those obtained from tapping tests on 16MnCr5. The applied torque about the cutting edge of teeth at lead chamfer is estimated respectively and it is shown that observed value is gradually decreased with following teeth.