• Title/Summary/Keyword: High torque

Search Result 1,687, Processing Time 0.031 seconds

A Study on Design and Performance Test for Underwater Towing Sonar Cable (수중 예인 소나용 케이블 설계 및 성능에 대한 연구)

  • Jae-Hyun, Na;Eui-Chang, Hong;Seung-Cheon, Kim;Dong-Gil, Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1095-1104
    • /
    • 2022
  • The towing cable plays a role in dropping and salvaging the Towed Array Sonar System (TASS) into the water and transmitting the signal (information) detected by the sonar in the water to the probe or surface ship. The towing cable consists of a heavy cable and a lightweight cable in detail. The towing cable for sonar is characterized by high reliability and durability as the underwater environment deteriorates as the operating depth increases. Due to these restrictions, cases designed and manufactured in Korea are extremely rare. The core technology for towing cable design secured through this study is expected to be used in various ways in the defense industry and the private sector.

Correlation Between Knee Muscle Strength and Maximal Cycling Speed Measured Using 3D Depth Camera in Virtual Reality Environment

  • Kim, Ye Jin;Jeon, Hye-seon;Park, Joo-hee;Moon, Gyeong-Ah;Wang, Yixin
    • Physical Therapy Korea
    • /
    • v.29 no.4
    • /
    • pp.262-268
    • /
    • 2022
  • Background: Virtual reality (VR) programs based on motion capture camera are the most convenient and cost-effective approaches for remote rehabilitation. Assessment of physical function is critical for providing optimal VR rehabilitation training; however, direct muscle strength measurement using camera-based kinematic data is impracticable. Therefore, it is necessary to develop a method to indirectly estimate the muscle strength of users from the value obtained using a motion capture camera. Objects: The purpose of this study was to determine whether the pedaling speed converted using the VR engine from the captured foot position data in the VR environment can be used as an indirect way to evaluate knee muscle strength, and to investigate the validity and reliability of a camera-based VR program. Methods: Thirty healthy adults were included in this study. Each subject performed a 15-second maximum pedaling test in the VR and built-in speedometer modes. In the VR speedometer mode, a motion capture camera was used to detect the position of the ankle joints and automatically calculate the pedaling speed. An isokinetic dynamometer was used to assess the isometric and isokinetic peak torques of knee flexion and extension. Results: The pedaling speeds in VR and built-in speedometer modes revealed a significantly high positive correlation (r = 0.922). In addition, the intra-rater reliability of the pedaling speed in the VR speedometer mode was good (ICC [intraclass correlation coefficient] = 0.685). The results of the Pearson correlation analysis revealed a significant moderate positive correlation between the pedaling speed of the VR speedometer and the peak torque of knee isokinetic flexion (r = 0.639) and extension (r = 0.598). Conclusion: This study suggests the potential benefits of measuring the maximum pedaling speed using 3D depth camera in a VR environment as an indirect assessment of muscle strength. However, technological improvements must be followed to obtain more accurate estimation of muscle strength from the VR cycling test.

Performance Evaluation for Several Control Algorithms of the Actuating System Using G/C HILS Technique (비행 전구간 유도제어 HILS 기법을 적용한 구동제어 알고리즘 성능 평가 연구)

  • Jeon, Wan Soo;Cho, Hyeon Jin;Lee, Man Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.9
    • /
    • pp.114-129
    • /
    • 1996
  • This paper describes the whole development phase for the underwater vehicle actuating system with high hydroload torque disturbance. This includes requirement analysis, system modeling, control algorithm design, real time implementation, test and performance evaluations. As for driving control algorithms, fuzzy logic, variable structure and PD(Proportional-Differential) algorithm were designed and implemented on board controller using a single chip microprocessor. Intel 8797. And test and performance evaluation is carried out both single test and wystem integration test. We could confirm the basic performance of actuating system through the single test and gereral developing work of any actuating systems was finished with a single performance test of actuating system without system integration test. But, we suggested that system integration test be needed. System integration test is carried out using G/C HILS(Guidance and Control Hardware-In-the -Loop Simulation) which is constituted flight motion simulator, load simulator, real time host computer and the related subsystems such as inertial navigation system, power supply system and Guidance and Control Computer etc.. The most important practical contribution of this paper is that full system characteristics such as minimal control effort, enhancement of guidance and autopilot performance by the actuating system using G/C HILS technique are investigated. Through full running G/C HILS, in spite of the passing to single tests, some control algorithm resulted in failure as to stability of full system and system time frame.

  • PDF

Knee Joint Isokinetic Rehabilitation Exercise Equipment Usability Evaluation

  • Byoung-Kwon Lee;Seung-Hwa Jung;Hye-Ri Shin;Dong-Wook Han;Chang-Young Kim;Jong-Min Woo;Dae-Sung Park
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.4
    • /
    • pp.414-420
    • /
    • 2022
  • Objective: In this study, the test-retest reliability and validity were presented to evaluate the usability of isokinetic rehabilitation equipment for the knee joint. Design: Cross-sectional design, reliability & validity study. Methods: Thirty healthy adults participated in the study. A CSMI dynamometer was used as a standardized measuring device to present the validity of the equipment. It was measured based on the dominant leg. The average peak torque value was selected as the measurement variable. After the measurement, a questionnaire was conducted on safety, satisfaction, and performance through the usability evaluation questionnaire. Results: The knee joint isokinetic rehabilitation equipment showed high reliability with Intraclass Correlations Coefficients (ICC) =0.883~0.956. In order to check the validity of the equipment, the 95% confidence interval of the mean difference limit was confirmed by the Bland & Altman plot. As a result, all three angular velocities showed a smaller confidence interval in the flexion than in extension. There were less than 10 plots that were not included in 2 Standard Deviation (SD) between all measurements. As a result of the usability evaluation questionnaire, the average of the safety domain(4.9±0.4), satisfaction domain(4.1±0.8), performance domain(4.3±0.8). Conclusions: If the product is improved by supplementing the items identified in the usability evaluation process, it is judged that it can be used as a useful device in various knee joint rehabilitation fields.

Full-scale TBM excavation tests for rock-like materials with different uniaxial compressive strength

  • Gi-Jun Lee;Hee-Hwan Ryu;Gye-Chun Cho;Tae-Hyuk Kwon
    • Geomechanics and Engineering
    • /
    • v.35 no.5
    • /
    • pp.487-497
    • /
    • 2023
  • Penetration rate (PR) and penetration depth (Pe) are crucial parameters for estimating the cost and time required in tunnel construction using tunnel boring machines (TBMs). This study focuses on investigating the impact of rock strength on PR and Pe through full-scale experiments. By conducting controlled tests on rock-like specimens, the study aims to understand the contributions of various ground parameters and machine-operating conditions to TBM excavation performance. An earth pressure balanced (EPB) TBM with a sectional diameter of 3.54 m was utilized in the experiments. The TBM excavated rocklike specimens with varying uniaxial compressive strength (UCS), while the thrust and cutterhead rotational speed were controlled. The results highlight the significance of the interplay between thrust, cutterhead speed, and rock strength (UCS) in determining Pe. In high UCS conditions exceeding 70 MPa, thrust plays a vital role in enhancing Pe as hard rock requires a greater thrust force for excavation. Conversely, in medium-to-low UCS conditions less than 50 MPa, thrust has a weak relationship with Pe, and Pe becomes directly proportional to the cutterhead rotational speed. Furthermore, a strong correlation was observed between Pe and cutterhead torque with a determination coefficient of 0.84. Based on these findings, a predictive model for Pe is proposed, incorporating thrust, TBM diameter, number of disc cutters, and UCS. This model offers a practical tool for estimating Pe in different excavation scenarios. The study presents unprecedented full-scale TBM excavation results, with well-controlled experiments, shedding light on the interplay between rock strength, TBM operational variables, and excavation performance. These insights are valuable for optimizing TBM excavation in grounds with varying strengths and operational conditions.

A Diagnosis system of misalignments of linear motion robots using transfer learning (전이 학습을 이용한 선형 이송 로봇의 정렬 이상진단 시스템)

  • Su-bin Hong;Young-dae Lee;Arum Park;Chanwoo Moon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.801-807
    • /
    • 2024
  • Linear motion robots are devices that perform functions such as transferring parts or positioning devices, and require high precision. In companies that develop linear robot application systems, human workers are in charge of quality control and fault diagnosis of linear robots, and the result and accuracy of a fault diagnosis varies depending on the skill level of the person in charge. Recently, there have been many attempts to utilize artificial intelligence to diagnose faults in industrial devices. In this paper, we present a system that automatically diagnoses linear rail and ball screw misalignment of a linear robot using transfer learning. In industrial systems, it is difficult to obtain a lot of learning data, and this causes a data imbalance problem. In this case, a transfer learning model configured by retraining an established model is widely used. The information obtained by using an acceleration sensor and torque sensor was used, and its usefulness was evaluated for each case. After converting the signal obtained from the sensor into a spectrogram image, the type of abnormality was diagnosed using an image recognition artificial intelligence classifier. It is expected that the proposed method can be used not only for linear robots but also for diagnosing other industrial robots.

Simulator for 3 Phase Induction Motor with LCL Filter and PWM Rectifier (LCL 필터와 PWM 정류기를 이용한 3상 유도전동기의 시뮬레이터)

  • Cho, Kwan Yuhl;Kim, Hag Wone
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.861-869
    • /
    • 2020
  • A dynamo set for a high-power induction motor drive is expensive and needs a long time to manufacture. Therefore, the development of a simulator that functions as the induction motor and load equipment is required. A load simulator of an inverter for a high-power three-phase induction motor consists of a reactor and three-phase PWM inverter. Therefore, it cannot simulate the dynamic characteristics of an induction motor and functions only as a load. In this paper, a real-time simulator is proposed to simulate a model of an induction motor and the load characteristics based on an LCL filter and three-phase PWM rectifier for a three-phase induction motor. The currents of a PWM inverter that simulate the stator currents of the motor are controlled by the inductor currents and capacitor voltages of the LCL filter. The capacitor voltages of the LCL filter simulate the induced voltages in the stator windings by the rotating rotor fluxes of the motor, and the capacitor voltages are controlled by the inductor currents and a PWM rectifier. The rotor currents, the stator and rotor flux linkages, the electromagnetic torque, the slip frequency, and the rotor speed are derived from the inverter currents and the motor parameters. The electrical and mechanical model characteristics and the operation of vector control were verified by MATLAB/Simulink simulation.

DEVELOPMENT OF AC SERVO MOTOR CONTROLLER FOR INDUSTRIAL ROBOT AND CNC MACHINE SYSTEM (산업용 ROBOT와 공작기계를 위한 AC SERVO MOTOR 제어기 개발)

  • Lim, Sang-Gwon;Lee, Jin-Won;Moon, Yong-Ky;Jeon, Dong-Lyeol;Jin, Sang-Hyun;Oh, In-Hwan;Kim, Dong-Il;Kim, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1211-1214
    • /
    • 1992
  • AC servo motor drives, Fara DS series, proposed in this paper can be effectively used in robots, CNC machine tools, and FA system with AC servo motors as actuators. The inverter of the AC servo drive consists of IGBT (Insulated Gate Bipolar Transistor) which have high switching frequency. Noises and vibrations generated in variable speed control of AC servo motors can be greatly reduced due to their high switching frequencies. In the developed servo drive, maximum torque is always generated in the whole speed range by compensating phase shift, which results from the nonlinearies of the AC servo motor during abrupt acceleration and deceleration. Abundant protection functions are provided to prevent abnormal state of the servo motor, and furthermore diverse user options are considered provided for the effective application. The proposed AC servo motor drive is designed to minimize velocity variation with respect to external load, supply voltage, environmental temperature, and humidity, so can be widely used in the fields of factory automation including robots and CNC msachine tools.

  • PDF

Processability of Bio-composites Applied Polyolefin to Recycled Fiberboard Flour (Polyolefin계 고분자에 섬유판 가공 부산물을 적용한 환경 친화형 바이오복합재의 가공성)

  • Choi, Seung-Woo;Kim, Hee-Soo;Lee, Byoung-Ho;Kim, Hyun-Joong;Ahn, Sye-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.6 s.134
    • /
    • pp.55-62
    • /
    • 2005
  • This study was conducted to evaluate the application of a bio-composite made by the addition recycled fiber board flour as filler. Recycled fiber board (high density fiber board, HDF) flour was added to polyolefin polymer low density polyethylene (LDPE) and polypropylene (PP) for the preparation of bio-composite materials. The mechanical properties and processability of the recycled HDF flour filled LDPE and recycled HDF flour filled PP bio-composites were then measured and compared to those of wood flour (WF) and rice-husk flour (RHF) filled LDPE and PP bio-composites, respectively. The tensile and impact strengths of the recycled HDF flour filled LDPE and PP bio-composites had similar mechanical properties to those of the WF and RHF filled LDPE and PP bio-composites. To measure the processability, torques of the bio-composites were also measured. The torques of the HDF flour filled LDPE and PP bio-composites were lower than those of the WF and RHF filled polyolefin (PP and LDPE) bio-composites with a filler loading of 30 wt.%. This result showed definite processability, which was not related with the distribution of the particle size of the material added. The recycled fiber board flour filled bio-composites showed applicability as substitutes for the bio-composites currently used in the bio-composites industry.

Effect of fuel injection timing on the combustion and NOx emission characteristics in a single cylinder diesel engine applied with diesel fuel for naval vessel and biodiesel (함정용 디젤 연료와 바이오디젤 연료를 적용한 단기통 디젤엔진에서 연료분사시기가 연소 및 질소산화물 배출특성에 미치는 영향)

  • Lee, Hyungmin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.681-687
    • /
    • 2014
  • The objective of this work presented here was focused on analysis of in-cylinder combustion characteristic, engine performance, and nitrogen oxides emission characteristic from marine gas oil for propulsion diesel engine of naval vessels and biodiesel with fuel injection timing in a single cylinder diesel engine. In addition, combustion process was analyzed with a high speed camera of marine gas oil and biodiesel fuel. Retarding the fuel injection timing from $BTDC25^{\circ}CA$ to $BTDC5^{\circ}CA$, in cylinder peak combustion pressure was gradually decreased, however, engine torque showed a tendency to increase. The highest nitrogen oxides level was measured at $BTDC15^{\circ}CA$, they were reduced at retarded and advanced condition on the basis of $BTDC15^{\circ}CA$. Comparing with combustion process of marine gas oil and biodiesel fuel at $BTDC5^{\circ}CA$, self-ignition timing of biodiesel fuel included oxygen content was faster than marine gas oil, however, a cautious observation indicates a slightly higher flame intensity for marin gas oil than biodiesel as a diffusion flame is developing.