• Title/Summary/Keyword: High temperature superconducting materials

Search Result 133, Processing Time 0.026 seconds

Development of a PLD heater for continuous deposition and growth of superconducting layer

  • Jeongtae Kim;Insung Park;Gwantae Kim;Taekyu Kim;Hongsoo Ha
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.2
    • /
    • pp.14-18
    • /
    • 2023
  • Superconducting layers deposited on the metal substrate using the pulsed laser deposition process (PLD) play a crucial role in exploring new applications of superconducting wires and enhancing the performance of superconducting devices. In order to improve the superconducting property and increase the throughput of superconducting wire fabricated by pulsed laser deposition, high temperature heating device is needed that provides high temperature stability and strong durability in high oxygen partial pressure environments while minimizing performance degradation caused by surface contamination. In this study, new heating device have been developed for PLD process that deposit and growth the superconducting material continuously on substrate using reel-to-reel transportation apparatus. New heating device is designed and fabricated using iron-chromium-aluminum wire and alumina tube as a heating element and sheath materials, respectively. Heating temperature of the heater was reached over 850 ℃ under 700 mTorr of oxygen partial pressure and is kept for 5 hours. The experimental results confirm the effectiveness of the developed heating device system in maintaining a stable and consistent temperature in PLD. These research findings make significant contributions to the exploration of new applications for superconducting materials and the enhancement of superconducting device performance.

The recent investigation and engineering application of YBCO bulk materials

  • Hong, Z;Jiang, Y;Viznichenko, R V;Coombs, T A
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.2
    • /
    • pp.1-11
    • /
    • 2008
  • The application of bulk superconducting materials to electrical power systems is very attractive because bulk high temperature superconductors offer excellent electromagnetic properties. In recent years there has been significant progresses in the research and fabrication of superconducting bulk materials. Numerous efforts have been made worldwide to make bulk YBCO as a replacement of the conventional magnets to produce larger magnetic field and hence to improve the device performance in electrical power applications. This paper gives a comprehensive review of different applications of bulk HTS materials, concentrating in three areas including superconducting bearing, superconducting motors and high field magnets. The advantages of applying superconducting material into each application are analysed. The status of current research in each section is summarized and examples are given to demonstrate how YBCO bulk materials can benefit the design of electrical devices. Several numerical models which calculate the electromagnetic properties of bulk superconductors are introduced and finally the article concludes with a review on the studies of the demagnetisation effect in superconducting bulk magnets which is extremely relevant to applying superconducting technology to rotating machines.

A Study on the Electrical Strength of Insulating Materials for High-Tc Superconducting Devices

  • Bae, Duck Kweon;Kim, Chung-Hyeok;Pak, Min-Sun;Oh, Yong-Cheul;Kim, Jin-Sa;Shin, Cheol-Gee;Lee, Joon-Ung;Song, Min-Jong;Choi, Woon-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.6
    • /
    • pp.294-300
    • /
    • 2005
  • According to the trend for electric power equipment of high capacity and reduction of its size, the needs for the new high performance electric equipments become more and more important. On of the possible solution is high temperature superconducting (HTS) power application. Following the successful development of practical HTS wires, there have been renewed activities in developing superconducting power equipment. HTS equipments have to be operated in a coolant such as liquid nitrogen ($LN_2$) or cooled by conduction-cooling method such as using Gifford-McMahon (G-M) cryocooler to maintain the temperature below critical level. In this paper, the dielectric strength of some insulating materials, such as unfilled epoxy, filled epoxy, and polyimide in $LN_2$ was analyzed. Epoxy is a good insulating material but fragile at cryogenic temperature. The filled epoxy composite not only compensates for this fragile property but enhances its dielectric strength.

The progresses of superconducting technology for power grid last decade in China

  • Xiao, Liye;Gu, Hongwei
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • With the increasing development of renewable energy, it is expected that large-scale renewable power would be transported from the west and north area of China to the east and south area. For this reason, it will be necessary to develop a wide-area power grid in which the renewable energy would be the dominant power source, and the power grid will be faced by some critical challenges such as long-distance large-capacity power transmission, the stability of the wide-area power grid and the land use problem for the power grid. The superconducting technology for power (STP) would be a possible alternative for the development of China's future power grid. In last decade, STP has been extensively developed in China. In this paper, we present an overview of the R&D of STP last decade in China including: 1) the development of high temperature superconducting (HTS) materials, 2) DC power cables, 3) superconducting power substations, 4) fault current limiters and 5) superconducting magnetic energy storage (SMES).

Exotic superconducting state under high magnetic fields: Insights from iron-based superconductor

  • Min Jae Kim;Jong Mok Ok
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.2
    • /
    • pp.1-4
    • /
    • 2023
  • Over the past decade, the exploration of high-temperature superconductivity and the discovery of a wide range of exotic superconducting states in Fe-based materials have propelled condensed matter physics research to new frontiers. These materials exhibit intriguing phenomena arising from their multiband electronic structure, strongly orbital-dependent effects, extremely small Fermi energy, electronic nematicity, and topological aspects. Among the various factors influencing their superconducting properties, high magnetic fields play a crucial role as a control knob capable of disrupting the subtle balance between the spin, charge, lattice, and orbital degrees of freedom, leading to the emergence of various exotic superconducting states. In this review, we provide an overview of the current understanding of the exotic superconducting states observed in Fe-based superconductors, with a particular focus on FeSe and Sr2VO3FeAs, under the influence of high magnetic fields.

Conductive link between cryocooler and magnet in cryogen-free LTS magnet system

  • Choi, Yeon Suk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.59-62
    • /
    • 2013
  • The conductive link is used as a cooling medium between a cryocooler and magnet in a cryogen-free superconducting magnet system. The low temperature superconducting (LTS) magnet has one solenoidal configuration with a metal former which has a 52 mm room temperature bore. The superconducting coil is installed in the cryostat maintaining high vacuum and cooled by a two-stage cryocooler. In order to maintain the operating temperature of magnet at the designed level, the cold head temperature of the cryocooler must be lower so that heat can be removed from the superconducting coil. Also, temperature difference is occurred between the magnet and cryocooler and its magnitude is dependent upon the contact resistance at the interfacial surface between metals in the conductive link. In the paper, the performance of the LTS magnet is investigated with respect to the conductive link between the magnet former and the cold head of the cryocooler. The effects of the contact pressure and interfacial materials on the temperature distribution along the conductive link are also presented.

Thermal Conductivity Measurement of Insulation Material for Superconducting Application

  • Chol, Y.S.;Kim, D.L.;Shin, D.W.;Hwang, S.D.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.2
    • /
    • pp.29-32
    • /
    • 2011
  • The thermal properties of insulation material are essential to develop a high-temperature superconducting (HTS) power cable to be operated at around liquid nitrogen temperature. Unlike metallic materials, nonmetallic materials have a high thermal resistance; therefore special attention needs to be paid to estimate heat flow correctly. Thus, we have developed a precise instrument for measuring the thermal conductivity of insulating materials over a temperature range from 40 K to near room temperature using a cryocooler. Firstly, the measurement of thermal conductivity for Teflon is carried out for accuracy confirmation. For a supplied heat flux, the temperature difference between warm and cold side is measured in steady state, from which the thermal conductivity of Teflon is calculated and compared with published result of NIST. In addition, the apparent thermal conductivity of Polypropylene laminated paper (PPLP) is presented and its temperature dependency is discussed.

Local transport properties of coated conductors by laser-scan imaging methods

  • Kim, Gracia;Jo, William;Nam, Dahyun;Cheong, Hyeonsik;Moon, Seoung Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.2
    • /
    • pp.1-4
    • /
    • 2016
  • To observe the superconducting current and structural properties of high critical temperature ($T_c$) superconductors (HTS), we suggest the following imaging methods: Room temperature imaging (RTI) through thermal heating, low-temperature bolometric microscopy (LTBM) and Raman scattering imaging. RTI and LTBM images visualize thermal-electric voltages as different thermal gradients at room temperature (RT) and superconducting current dissipation at near-$T_c$, respectively. Using RTI, we can obtain structural information about the surface uniformity and positions of impurities. LTBM images show the flux flow in two dimensions as a function of the local critical currents. Raman imaging is transformed from Raman survey spectra in particular areas, and the Raman vibration modes can be combined. Raman imaging can quantify the vibration modes of the areas. Therefore, we demonstrate the spatial transport properties of superconducting materials by combining the results. In addition, this enables visualization of the effect of current flow on the distribution of impurities in a uniform superconducting crystalline material. These imaging methods facilitate direct examination of the local properties of superconducting materials and wires.

BSCCO Superconducting Powder by SHS

  • Soh, Dea-Wha;Cho, Yong-Joon;Korobova, N.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.99-102
    • /
    • 2002
  • The BSCCO superconductor materials of using Self-propagating High-temperature Synthesis (SHS) were studied. Mechano-chemical activation - as a pre-treatment of the reactants mixture - strongly influences the kinetic parameters, the reaction mechanism, and the composition and structure of the final product. In this paper as an effort for fabricating the SHSed BSCCO superconductor powder SHS method was considered to application in the synthesis of superconducting materials.

  • PDF