• 제목/요약/키워드: High temperature pressure sensor

검색결과 167건 처리시간 0.033초

공작기계용 센서노드 설계 및 제작기술 (Designing and Manufacturing Technology of Sensor Node for Machine Tools)

  • 장동영;권오성;박만진;김승재
    • 한국정밀공학회지
    • /
    • 제31권7호
    • /
    • pp.569-576
    • /
    • 2014
  • Sensor node means a device to include sensor, amplifier, and data acquisition (DAQ) equipment. The sensor converts physical signals to electric signals and weak signals from the sensor can be amplified through the amplifier. DAQ equipment converts analog signal to digital signal and collects converted digital signal. Since the sensor node is sensitive to the environment so that selection of mounting position and fixture design of sensor are applied differently depending on the characteristics of a target. This study is about designing and manufacturing sensor node to be used in a machine tool. The environment of machine tool is very severe due to noise, temperature fluctuation, and dust, etc. Hence, the sensor and amplifier must be designed and manufactured by considering the environmental issues. The designed and manufactured sensor node was tested for the reliability and effectiveness of the developed sensor nodes in the study.

고압용 코롬질화박막형 압력센서의 제작과 그 특성 (The Fabrication of Chromium Nitride Thin-Film Type Pressure Sensors for High Pressure Application and Its Characteristics)

  • 정귀상;최성규;서정환;류지구
    • 한국전기전자재료학회논문지
    • /
    • 제14권6호
    • /
    • pp.470-474
    • /
    • 2001
  • This paper describes the fabrication and characteristics of CrN thin-film type pressure sensors, in which the sensing elements were deposited on SuS. 630 diaphragm by DC reactive magnetron sputtering in an argon-nitride atmosphere(Ar-(10%)N$_2$). The optimized condition of CrN thin-film sensing elements was thickness range of 3500$\AA$ and annealing condition(300$\^{C}$, 3 hr) in Ar-10%N$_2$ deposition atmosphere. Under optimum conditions, the CrN thin-films for strain gauges is obtained a high resistivity, ρ=1147.65 $\mu$Ωcm, a low temperature coefficient of resistance, TCR=186ppm/$\^{C}$ and a high temporal stability with a good longitudinal, 11.17. The output sensitivity of fabricated CrN thin-film type pressure sensors is 2.36 mV/V, 4∼20nA and the maximum non-linearity is 0.4%FS and hysteresis is less than 0.2%FS.

  • PDF

SLD 광원을 이용한 광섬유 패브리페로 센서 (Fiber Fabry-Perot Sensor using SLD Light Source)

  • 김광수;이병윤;이홍식;임근희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.2186-2188
    • /
    • 2000
  • A fiberoptic sensor using an SLD as a light source has been studied. The sensor system employs an intrinsic fiber Fabry-Perot interferometer as a sensing tip and a fiber Mach-Zehnder interferometer as a processing one. A free loading test for temperature application shows that the fiberoptic sensor has a wide-dynamic range as well as high resolution. Due to the inherent property of the optical fiber itself and the intrinsic Fabry-Perot interferometer. the fiberoptic sensor gives obvious benefits when it is applied to harsh environments to monitor some physical parameters such as temperature, strain, pressure and vibration.

  • PDF

가스압력조절식 나트륨 열관전기로를 이용한 은 고정점 실현과 고온백금저항온도 계측에의 응용 (Realization of silver fixed-point and application for the high temperature platinum resistance thermometry using the gas-pressure controlled sodium heat-pipe furnace)

  • 감기술;최인묵;양인석;김용규
    • 센서학회지
    • /
    • 제18권2호
    • /
    • pp.116-121
    • /
    • 2009
  • Pressure-controlled sodium heat pipe furnace was designed and fabricated, and its characteristics was investigated. Pressure control system was controlled within ${\pm}0.5\;Pa$ at 150 kPa and the stability of pressure was decreased to ${\pm}2.5\;Pa$, when the pressure-controlled system connected with the heat pipe. The melting curve of Ag fixed-point realized well by the adiabatic method using the pressure-controlled sodium heat pipe furnace and its accuracy showed ${\pm}2.27\;mK$ from the calculation of 20% to 80% at the plateau. The freezing curve of Ag fixed-point also realized and its plateau value was 2.23 mK lower than that of the melting curve.

마그네틱 필드를 이용한 배관 두께 측정 방법론 개발 (Development of Methodology to Measure the Thickness of Pipes using Magnetic Field)

  • 김미나;채장범;박일한;김에녹
    • 한국압력기기공학회 논문집
    • /
    • 제6권2호
    • /
    • pp.47-53
    • /
    • 2010
  • In this research project, development of methodology to measure the thickness of pipes in the wide range using magnetic field. The magnetic field spreading in the sensor and the plate was modeled in the cases of the various thicknesses in plate. Based on the analysis, sensors were designed, manufactured and tested to optimize the specifications of the sensor. The sensor can be used in high temperature through calibration. And the uncertainty of the sensor was estimated.

  • PDF

PEDOT 기상중합 원단을 이용한 멀티 레이어 압력 센서 개발 (Development of Multi-layer Pressure Sensor using PEDOT Vapor Phase Polymerization)

  • 임승주;배종혁;장성진;임지영;박근혜;고재훈
    • 센서학회지
    • /
    • 제27권3호
    • /
    • pp.186-191
    • /
    • 2018
  • Smart textile industries have been precipitously developed and extended to electronic textiles and wearable devices in recent years. In particular, owing to an increasingly aging society, the elderly healthcare field has been highlighted in the smart device industries, and pressure sensors can be utilized in various elderly healthcare products such as flooring, mattress, and vital-sign measuring devices. Furthermore, elderly healthcare products need to be more lightweight and flexible. To fulfill those needs, textile-based pressure sensors is considered to be an attractive solution. In this research, to apply a textile to the second layer using a pressure sensing device, a novel type of conductive textile was fabricated using vapor phase polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT). Vapor phase polymerization is suitable for preparing the conductive textile because the reaction can be controlled simply under various conditions and does not need high-temperature processing. The morphology of the obtained PEDOT-conductive textile was observed through the Field Emission Scanning Electron Microscope (FESEM). Moreover, the resistance was measured using an ohmmeter and was confirmed to be adjustable to various resistance ranges depending on the concentration of the oxidant solution and polymerization conditions. A 3-layer 81-point multi-pressure sensor was fabricated using the PEDOT-conductive textile prepared herein. A 3D-viewer program was developed to evaluate the sensitivity and multi-pressure recognition of the textile-based multi-pressure sensor. Finally, we confirmed the possibility that PEDOT-conductive textiles could be utilized by pressure sensors.

다중화 Fabry-Perot 간섭형 광섬유 센서 시스템 (Multiplexed fabry-perot interferometric sensor system)

  • 나도성;예윤해;이동영;박광순
    • 한국광학회지
    • /
    • 제10권4호
    • /
    • pp.273-278
    • /
    • 1999
  • 광섬유 Fabry-Perot 간섭계를 센서로 하는 TDM 다중화 광섬유 압력/온도 센서시스템을 개발하고, 이 시스템을 이용하여 수위와 온도 측정실험을 행하였다. 측정시스템의 측정속도는 측정데이타를 저장하지 않는 경우 최대 초당 4500회이며, 센서의 응답속도는 ~1 ms로 추정된다. 압력센서와 온도센서의 특성은 이론적 추정치와 비교하여 각각 +13.7%,-18%의 차이를 보였으며, 반복실험을 통하여 선형화한 후의 선형화 오차는 1%이내, 온도의 변화가 $<0.1>^{\circ}C$이내 일 때 수위측정의 오차는 $\pm$0.3cm이며, 수위측정에 대한 시스템 잡음은 측정하지 않았다. 온도센서의 시스템 잡음은 0.1$^{\circ}C$이내였으며, 이 시스템을 이용하여 수위 및 온도 변화량에 대한 고속 측정실험을 수행할 결과 예상된 결과를 얻을 수 있었다.

  • PDF

고압용 박막형 압력센서의 특성 (Characteristics of thin-film type pressure sensors for high pressure)

  • 서정환;최성규;정찬익;류지구;남효덕;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.737-740
    • /
    • 2001
  • This paper describes the fabrication and characteristics of CrN thin-film type pessure sensors, which the sensing elements were deposited on SUS. 630 diaphragm by DC reactive magnetron sputtering in an argon-nitride atmosphere(Ar-(10%)N$_2$). The optimized condition of CrN thin-film sensing elements was thickness range of 3500${\AA}$ and annealing condition(300$^{\circ}C$, 3 hr) in Ar-10 %N$_2$deposition atmosphere. Under optimum conditions, the CrN thin-films for strain gauges is obtained a high resistivity, $\rho$=1147.65 ${\mu}$$\Omega$cm, a low temperature coefficient of resistance, TCR=-186 ppm/$^{\circ}C$ and a high temporal stability with a good longitudinal, 11.17. The output sensitivity of fabricated CrN thin-film type pressure sensors is 2.36 mV/V, 4∼20 mA and the maximum non-linearity is 0.4 %FS and hysteresis is less than 0.2 %FS.

  • PDF

초정밀 사출렌즈 금형 기술 (Mold Technology for Precision Injection Lens)

  • 하태호;조형한;송준엽;전종
    • 한국정밀공학회지
    • /
    • 제31권7호
    • /
    • pp.561-567
    • /
    • 2014
  • Precision injection mold is an essential element in order to manufacture small and precision plastic lenses used for phone camera. There are many critical factors to meet the requested specifications of high quality plastic lenses. One of the main issues to realize high quality is minimizing decenter value, which becomes more critical as pixel numbers increases. This study suggests the method to minimize decenter value by modifying ejecting structure of the mold. Decenter value of injection-molded lens decreased to 1 ${\mu}m$ level from 5 ${\mu}m$ by applying suggested ejecting method. Also, we also developed BIS (Built-in Sensor) based smart mold system, which has pressure and temperature sensors inside of the mold. Pressure and temperature profiles from cavities are obtained and can be used for deduction of optimal injection molding condition, filling imbalance evaluation, status monitoring of injection molding and prediction of lens quality.

압력센서용 다이아프램 제작을 위한 TMAH/AP 식각특성 (The Etching Characteristics of TMAH/AP for the Diaphragm Fabrication of Pressure Sensors)

  • 윤의중;김좌연
    • 반도체디스플레이기술학회지
    • /
    • 제2권4호
    • /
    • pp.19-22
    • /
    • 2003
  • In this paper, Si anisotropic etching characteristics of tetramethylammonium hydroxide (TMAH)/ammonium persulfate (AP) solutions were investigated to realize the optimum structure of a diaphragm for the piezoresistive pressure sensor application. Due to its low toxicity and its high compatibility with the CMOS processing, TMAH was used as Si anisotropic etchants. The variations of Si etch rate on the etching temperature, TMAH concentration, and etching time were obtained. With increasing the etching temperature and decreasing TMAH concentrations, the Si etch rate is increased while a significant non-uniformity exists on the etched surface because of formation of hillocks on the <100> surface. With the addition of AP to TMAH solution, the Si etch rate is increased and an improvement in flatness on the etching front is observed. The Si etch rate is also maximized with increasing the number of addition of AP to TMAH solution per one hour. The Si square diaphragms of 20$\mu\textrm{m}$ thickness and 100-400 $\mu\textrm{m}$ one-side length were fabricated successfully by adding AP of (5/6)g to 800 ml TMAH solution every 10 minutes.

  • PDF