• Title/Summary/Keyword: High temperature plant

Search Result 1,625, Processing Time 0.026 seconds

Efficiency for extracting icariin from Epimedium koreanum Nakai by temperature and solvent variations

  • Baek, Hum-Young;Lee, Young-Sang
    • Plant Resources
    • /
    • v.6 no.3
    • /
    • pp.221-226
    • /
    • 2003
  • To improve industrial scale extraction method for extraction of icariin from Epimedium koreanum Nakai, the yields under different extracting conditions such as solvent, temperature, duration and solvent to plant material weight ratio were compared. Regarding extracting solution, highest extracts and icariin yield could be achieved when 10% EtOH was used. In case of plant material to extracting solvent ratio, no significant differences could be observed from 1/10 to 1/50, indicating 1/10 was the most efficient. Extracting temperature significantly affected extracts and icariin yields in that 9$0^{\circ}C$ increased the collected extracts and icariin contents up to 29.6% and 0.76%, respectively, compared to 27.2%, 0.33% at 7$0^{\circ}C$. The yield of extracts was less dependent upon extracting temperature compared to icariin yield. Regarding extraction time, 4 hr and 6 hr resulted in high extracts and icariin yield, respectively. We found extracting Epimedium koreanum Nakai in 10 times volume of 10% EtOH for 4 and 6 hr at 9$0^{\circ}C$ seem to be relatively efficient methods for extracts and icariin, respectively.

  • PDF

Development of Special Steels for Turbine Blade of Nuclear Power Plant (원자력 터빈 블레이드용 특수강 개발)

  • Im, Cha-Yong;Kim, Seong-Jun
    • 연구논문집
    • /
    • s.24
    • /
    • pp.119-128
    • /
    • 1994
  • A special steels have been developed for the possible applications of turbine blade in nuclear power plant. The compositions of developed alloy were selected by the reference of imported alloy. The various properties such as tensile property, impact energy, hardness, and microstructures were investigated. All the properties of optimum heat treated materials were satisfied with the present specifications of turbine blade materials in unclear power plant. Furthermore, FATT(Fracture appearance transition temperature), high temperature tensile properties, and transformation temperatures of developed alloy also have been studied.

  • PDF

Biochemical Adaptation of Pinus pumila on Low Temperature in Mt. Seorak, Korea

  • Kim Chan-Soo;Han Sim-Hee;Lee Wi-Young;Lee Jae-Cheon;Park Young-Ki;Oh Chang-Young
    • Plant Resources
    • /
    • v.8 no.3
    • /
    • pp.217-224
    • /
    • 2005
  • We tested the hypothesis that alpine plants have special physiological and biochemical mechanisms in addition to their structural adaptation in order to survive under extreme conditions. The photosynthetic organs of Pinus pumila were used to examine the seasonal changes in sugar concentration, antioxidative enzyme, and lipid peroxidation. The concentrations of sucrose, glucose, fructose and reducing sugar were the highest in the leaves in April. But sugar contents in buds and inner barks did not respond sensitively on temperature change. Meanwhile superoxide dismutase (SOD) activity responded sensitively on the change of temperature and SOD in all tissues maintained high activity in April. Meanwhile anthocyanin content increased rapidly in June but the increase of anthocyanin content was not enough to prevent their tissues from the damage by the exposure of high temperature or other stress. In conclusion, under low temperature condition, P. pumila increased the concentration of soluble sugars and SOD activity in their tissues in order to overcome extreme environmental condition. But in summer, these stress defense system against high temperature might be disturbed slightly. This results in the increase of malondialdehyde (MDA) contents in three tissues by lipid peroxidation.

  • PDF

Proteomic Analyses of Chinese Cabbage(Brassica campestris L. pekinensis) Affected by High Temperature Stresses in Highland Cultivation During Summer in Korea (Proteomics를 이용한 고랭지 배추의 고온장해 해석)

  • Shin, Pyung-Gyun;Hong, Sung-Chang;Chang, An-Cheol;Kim, Sang-Hyo;Lee, Ki-Sang
    • Journal of Life Science
    • /
    • v.17 no.12
    • /
    • pp.1649-1653
    • /
    • 2007
  • High temperature stresses have caused growth inhibition and delayed heading in highland cultivation Chinese cabbage during summer in Korea. We have studied high temperature stress responses in the terms of changes of inorganic components and proteins by proteomic analyses. Insufficiencies of nitrogen and phosphorus have affected growth rate and calcium deficiency has caused blunted heading. Proteins extracted from Brassica seedling grown at the altitude of 600m and 900m in the Mount Jilun were extracted and analysed by 2-dimentional polyacrylamide gel electrophoresis. Profiles of protein expression was then analyzed by 2-dimentional gel analyses. Protein spots showing different expression level were picked using the spot handling workstation and subjected to MALDI-TOF MS. Total 48 protein spots were analyzed by MALDI-TOF MS and 30 proteins spots out of 48 were identified by peptide mass fingerprinting analyses. Fourteen proteins were up-regulated in extracts from the altitude of 900m and they were identified as oxygen-evolving proteins, rubisco activase and ATPase etc. Sixteen proteins were up-regulated in extracts from the altitude of 600m and they were identified as glutathione S-transferase(1, 28kD cold induced- and 24 kD auxin-binding proteins) and salt-stress induced protein etc. These stress-induced proteins were related to the mediated protective mechanism against oxidative damage during various stresses. The results indicated that physiological phenomenon in response to high temperature stresses might be resulted by complex and multiple array of responses with drought, heat, oxidative, salt, and cold by high temperature.

Effects of Temperature and Daylength on Growth and Grain Yield in Wheat (T. aestivum) (온도 및 일장조건이 소맥의 생육 및 수량에 미치는 영향)

  • Cho, C.H.;Chung, T.Y.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.24 no.2
    • /
    • pp.35-41
    • /
    • 1979
  • To observe the effects of temperature and photoperiod on the growth and yield of winter wheat (Triticum aestivum, L) eight varieties including Chang Kwang were tested at various treatments like longday-high temperature (24hrs-20\circ), shortdayhigh temperature (12hrs-20\circ), longday-low temperature (24hrs-14\circ) and shortday-low temperature (12hrs-14\circ). Among the traits measured, days to heading, plant height, spike length, number of spikes per hill and grain yield per hill were generally decreased at high temperature and long day treatment and increased at low temperature and shortday condition. Number of grains per spike was decreased at low temperature and short day condition while increased at longday and high temperature conditions. Grain weight was decreased significantly at high temperature and shortday while increased at low temperature and longday treatment.

  • PDF

Isolation of Differentially Expressed Genes by Low Temperature Treatment in Winter Oilseed Rape (Brassica napus L. cv. Tammi)

  • Chun Jong-Un;Seo Dong-Joong;Bae Chang-Hyu
    • Korean Journal of Plant Resources
    • /
    • v.19 no.3
    • /
    • pp.440-446
    • /
    • 2006
  • To investigate flowering related genes in winter-type oilseed rape (Brassica napus L. cv. Tammi), differentially expressed genes were isolated from leaves of the plant after low temperature treatment which is requirements for floral induction. As a result of suppression subtractive hybridization (SSH), 288 clones were randomly selected from SSH library. Using reverse Northern blot analysis, 150 of 288 clones were identified to be differentially expressed. Out of these 150 clones, 45 clones showed very high identities with the known genes. Four clones showed very high identities over 90% with metallothionein-like gene that is related to flowering-induced genes. Of these 4 clones, the cDNA clone, rfs-13, revealed high identity with meotallothionein-like protein in Arabidopsis thaliana (98%) and Brassica compestris (89%). Furthermore, gene expressed in immature flower stages was confirmed by Northern blot analysis.

Analysis of Grid Spring Characteristic of Fuel Assembly in High Temperature and High Pressure Environment (고온고압조건하에서의 핵연료 피복관 지지스프링의 하중-변위 특성 분석)

  • Lee, Young-Ho;Kim, Hyung-Kyu;Jung, Youn-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2146-2150
    • /
    • 2004
  • To evaluate the variation of spring stiffness in nuclear plant operating condition, load-displacement tests ($P-{\delta}$ test) were performed using two kinds of space grid springs in high temperature and high pressure water. With increasing temperature, stiffness of each spring gradually decreased except $100{\sim}150^{\circ}C$. It is apparently showed that spring with convex shape had a relatively high stability of spring stiffness at high temperature compared with I-shaped spring. It is suggested that the variation of spring stiffness with temperature and spring shape should be considered as an important variable in the design and analysis of the fuel assembly.

  • PDF

Relationship between Seed Vigour and Electrolyte Leakage in Rice Seeds with Different Grain-filling Period

  • Kim, Jin-Ho;Lee, Sheong-Chun;Song, Dong-Seog
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.3
    • /
    • pp.147-151
    • /
    • 1998
  • The conductivity test is a measure of electrolytes leakage from plant tissue. The shorter the maturation period after heading was the greater electrical conductivity (EC) of rice seed. The polymer-coated seed was not different in EC compared with non-coated seed. As soaking time of rice seed increased, EC increased gradually. The EC varied from 9.9 to 20.7$\mu$S $cm^{-1}g^{-l}$ for control plots and from 21.3 to 41.7$\mu$S $cm^{-1}g^{-l}$ for heat-killed seeds which were produced by autoclaving seeds at 121$^{\circ}C$ for 20 minutes. The germination speed (the rate of 5th day) of rice seed was 94% at control plot, 83% at low temperature and 20% at high temperature. Besides, germination percentage was 95% for the control, 92% for the low temperature treatment and 39% for the high temperature treatment. The EC was negatively correlated (r=-0.771$^{**}$) with germination percentage at low temperature. Water uptake in seeds of 30, 40, 50 days after heading (DAH) was greater than that of 20 DAH. Plant height of seedlings was 9.84 cm for the control but 4.32 cm for the high temperature treatment, and the tallest for polymer-coated seed. Dry weight of seedlings was 0.841 g for the control and 0.287 g at high temperature. Besides, the polymer-coated seed was heavier than non-coated seed. The number of roots was largest from 40 to 50 DAH and polymer-coated seed, but was decreased from 20 to 30 DAH. The length of roots was 20.52 cm at control plot and 19.89 cm polymer-coated seed but 8.68 cm for the low temperature treatment and 7.28 cm for the high temperature treatment.

  • PDF

Characteristics of Photosynthetic Electron Transport Activity in Isolated Chloroplast of Korean Ginseng and Radish (인삼과 무 엽록체의 광합성 전자전달 활성)

  • 김갑식
    • Journal of Plant Biology
    • /
    • v.33 no.2
    • /
    • pp.111-118
    • /
    • 1990
  • In order to characterize the chloroplasts of Korean ginseng as a semi-shade plant and radish as a sun plant, effects of growth light intensity on photosynthetic electron transport (PS) activity in chloroplasts and superoxide (O2.-) production in thylakoid membrane by irradiation were investigated. High-light chloroplasts of both plants showed higher PS activities than those grown under ow growth light intensity. High PS II and low PS I activities in ginseng chloroplasts (ratio of PS II/PS I : 1.1) were observed, but radish chloroplasts showed low PS II and high PS I activities (ratio of PS II/PS I : 0.3). PS II activity of both plants was little affected by temperature in range of 15-35$^{\circ}C$. Activities of whole -chain (PS II+I) in ginseng and PS I in radish were increased at high temperature (4$0^{\circ}C$). Preincubation of chloroplasts at 4$0^{\circ}C$ during 30 min, as a mild heat stress, caused rapid decrease in PS II and PS II+I activities of both plants. However PS I activity was not decreased in ginseng and rather increased in radish. O2.- production (NBT reduction) in Mehler reaction in the thylakoid membrane was inhibited by DCMU in both plants. DMBIB inhibited O2.- production in ginseng, but radish was insensitive to DMBIB. Electron flow system in ginseng thylakoid membrane was more susceptible to damage of photooxidation than that of radish.

  • PDF

Hydrogen Effect on the Oxidation of Zr-Alloy Claddings under High Temperature (수소화물에 의한 Zr 합금의 고온산화 가속효과)

  • Jung, Yunmock;Ha, Sungwoo;Park, Kwangheon
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.4
    • /
    • pp.389-394
    • /
    • 2016
  • The operation method of nuclear power plants is currently changing to high burn-up and long period that can enhance economics and efficiency of the plant. Since nuclear plant operation environment has been becoming severe, the amount of absorbed hydrogen also has increased. Absorbed hydrogen can be fatal securing safety of nuclear fuel cladding in case of Loss of Coolant Accidents(LOCA). In order to examine the impact of hydride on high-temperature oxidation, high-temperature oxidation experiment was performed on normal Zry-4 cladding and on Zry-4 cladding where hydrogen is charged in air pressure steam atmosphere under the $950^{\circ}C$ and $1000^{\circ}C$. According to the results, while oxidation acceleration due to charged hydrogen was not observed prior to breakaway oxidation creation, oxidation began to accelerate in cladding where hydrogens charged as soon as the breakaway oxidation started. If so much hydrogen are charged in the cladding, equiaxial monoclinic phase to unstable of stress is formed and it is presumed that oxidation is accelerated because nearby stress caused a crack in equiaxial phase, and that makes corrosion resistance decline sharply.