• 제목/요약/키워드: High temperature performance

검색결과 3,887건 처리시간 0.038초

고강도 용접구조용 강재 적용 장스팬 보부재의 해석적 내화성능 비교 연구 (Comparative Study for Long Span Beams built up with Sub-marine High Strength Structural Steels at High Temperature using Analytical Method)

  • 권인규
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 춘계 학술논문 발표대회
    • /
    • pp.120-121
    • /
    • 2016
  • Recently, the building has been changed into high-rise and long span and this yields a development of high performance structural steels in construction market. According to this effect, the SM 520 and the SM 570 were developed and utilized into steel building industry. However, the study for fire resistance of them were not done actively. In this study, to know and comparative the fire resistance performance of long span beams built up with high strength structural steels an analytical method is going to applied using mechanical and thermal properties at high temperature.

  • PDF

Stable In-reactor Performance of Centrifugally Atomized U-l0wt.%Mo Dispersion Fuel at Low Temperature

  • Kim, Ki-Hwan;Kwon, Hee-Jun;Park, Jong-Man;Lee, Yoon-Sang;Kim, Chang-Kyu
    • Nuclear Engineering and Technology
    • /
    • 제33권4호
    • /
    • pp.365-374
    • /
    • 2001
  • In order to examine the in-reactor performance of very-high-density dispersion fuels for high flux performance research reactors, U-l0wt.%Mo microplates containing centrifugally atomized powder were irradiated at low temperature. The U-l0wt.%Mo dispersion fuels show stable in- reactor irradiation behaviors even at high burn-up, similar to U$_3$Si$_2$ dispersion fuels. The atomized U-l0wt.%Mo fuel particles have a fine and a relatively uniform fission gas bubble size distribution. Moreover, only one of third of the area of the atomized fuel cross-sections at 70a1.% burn-up shows fission gas bubble-free zones, This appears to be the result of segregation into high Mo and low Mo.

  • PDF

고온용 압전 레벨 스위치 개발 (Development of Piezoelectric Level Switch for High Temperature)

  • 김나리;이영진
    • 한국전기전자재료학회논문지
    • /
    • 제28권12호
    • /
    • pp.802-807
    • /
    • 2015
  • This paper describes the development of a piezoelectric level switch, which aims to effectively monitor the level status in high ambient temperatures. In order to adjust the impedance near the resonant frequency and temperature characteristics, the effect of the case and backing layer materials on its performance was analyzed using the finite element method (FEM). The suggested prototype new level switch has three heat-sink plates attached to SUS bar of 230 mm long, and case of PEEK which contains PZT sensing part. To illustrate the validity of this level switch, 10 samples are prepared and investigated the sensing performance through the high and low temperature ambient.

Effect of high temperature on the bond performance between steel bars and recycled aggregate concrete

  • Yan, Lan-Lan;Liang, Jiong-Feng;Zhao, Yan-gang
    • Computers and Concrete
    • /
    • 제23권3호
    • /
    • pp.155-160
    • /
    • 2019
  • The use of recycled aggregate concrete for the purpose of environmental and resource conservation has gained increasing interest in construction engineering. Nevertheless, few studies have reported on the bonding performance of the bars in recycled aggregate concrete after exposed to high temperatures. In this paper, 72 pull-out specimens and 36 cubic specimens with different recycled coarse aggregate content (i.e., 0%, 50%,100%) were cast to evaluate the bond behavior between recycled aggregate concrete and steel bar after various temperatures ($20^{\circ}C$, $200^{\circ}C$, $400^{\circ}C$, $600^{\circ}C$). The results show that the recycled aggregate concrete pull-out specimens exhibited similar bond stress-slip curves at both ambient and high temperature. The bond strength declined gradually with the increase of the temperature. On the basis of a regression analysis of the experimental data, a revised bond strength mode and peak slip ratios relationship model were proposed to predict the post-heating bond-slip behavior between recycled aggregate concrete and steel bar.

Self-Cleaning and Photocatalytic Performance of TiO2 Coating Films Prepared by Peroxo Titanic Acid

  • Yadav, Hemraj M.;Kim, Jung-Sik
    • 한국재료학회지
    • /
    • 제27권11호
    • /
    • pp.577-582
    • /
    • 2017
  • Self-cleaning and photocatalytic $TiO_2$ thin films were prepared by a facile sol-gel method followed by spin coating using peroxo titanic acid as a precursor. The as-prepared thin films were heated at low temperature($110^{\circ}C$) and high temperature ($400^{\circ}C$). Thin films were characterized by X-ray diffraction(XRD), Field-emission scanning electron microscopy(FESEM), UV-Visible spectroscopy and water contact angle measurement. XRD analysis confirms the low crystallinity of thin films prepared at low temperature, while crystalline anatase phase was found the for high temperature thin film. The photocatalytic activity of thin films was studied by the photocatalytic degradation of methylene blue dye solution. Self-cleaning and photocatalytic performance of both low and high temperature thin films were compared.

High Temperature Size Exclusion Chromatography

  • Cho Hee-Sook;Park Soo-Jin;Ree Moon-Hor;Chang Tai-Hyun;Jung Jin-Chul;Zin Wang-Cheol
    • Macromolecular Research
    • /
    • 제14권3호
    • /
    • pp.383-386
    • /
    • 2006
  • High temperature size exclusion chromatography (SEC) has been used widely for the characterization of crystalline polymers, for which high temperature operation above the polymer melting temperature is required to dissolve the polymers. However, this high temperature operation has many advantages in SEC separation in addition to merely increasing polymer solubility. At high temperature the eluent viscosity decreases, which in turn decreases the column backpressure and increases the diffusivity of the analytes. Therefore, many reports on the high temperature operation of high performance liquid chromatography (HPLC) have focused on shortening the analysis time and enhancing the resolution. However, the application of high temperature SEC analysis to exploit the merits of high temperature operation is scarce. In this article, therefore, we report on a new apparatus design for high temperature SEC.

Performance and Heat Tolerance of Broilers as Affected by Genotype and High Ambient Temperature

  • Al-Batshan, H.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권10호
    • /
    • pp.1502-1506
    • /
    • 2002
  • This experiment was conducted to evaluate the effects of the broiler's genotype ($G_t$) and ambient temperature ($T_a$) on performance and core body temperature ($T_core$) of broiler chicks. A factorial arrangement of two $G_t$ (Hubbard and ISA J57 chicks) and two $T_a$ (moderate, $23{\pm}0.5^{\circ}C$ and hot, $33{\pm}0.5^{\circ}C$) were used in this study. Performance data (body weight gain, feed intake and feed:gain ratio) were determined weekly for six weeks. Chicks' $T_core$ was measured using a biotelemetric system between Weeks five and six. Results showed that body weight gain and feed intake were significantly high, and feed:gain ratio was significantly low for Hubbard chicks compared to those of ISA J57 chicks. High $T_a$ significantly reduced weight gain and feed intake. Furthermore, the reduction in body weight gain and feed intake under the hot $T_a$ was more pronounced for Hubbard chicks than those of the ISA J57 chicks resulting in significant $G_t$ by $T_a$ interaction. Chicks grown under moderate $T_a$ had significantly lower $T_core$ than those grown under hot $T_a$. The $T_core$ of the Hubbard chicks was significantly lower than that of the ISA J57 at the moderate $T_a$ while under the hot $T_a$, the magnitude of the change in $T_core$ was more pronounced in Hubbard chicks than that of ISA J57; this resulted in a significant $G_t$ by $T_a$ interaction. The results of this study indicate that chicks with higher potential for growth under thermo-neutral temperature are more susceptible to heat stress than chicks with lower potential for growth. This maybe due, at least in part, to their lower body $T_core$ under moderate temperature and to the lesser ability of these fast growing chicks to regulate their $T_core$ when exposed to heat stress, as was clearly shown on these birds' performance.

스테인레스강 볼베어링의 수윤활 마찰 특성 (Frictional Characteristics of Water-lubricated Stainless Steel Ball Bearing)

  • 이재선;김종인;김지호;박홍윤;지성균
    • Tribology and Lubricants
    • /
    • 제20권3호
    • /
    • pp.140-144
    • /
    • 2004
  • Water-lubrication ball bearings are required to install in aqueous medium where water is used as coolant or working fluid. However water-lubricated frictional characteristics of stainless steel ball bearing is not will known compared to oil-lubricated frictional characteristics. Furthermore study on friction at high temperature is rare because bearing maintenance strategy for water-lubricated or chemicals-lubricated bearings of equipment is mostly based on change of failed bearings and parts. Ball bearings and ball screws are used to transmit power in the control rod drive mechanism for an integral reactor and are lubricated with high temperature and high pressure chemically-controlled water. Bearings and power transmitting mechanical elements for a nuclear reactor require high reliability and high performance during estimated lifetime, and their performance should be verified. In this paper, experimental research results of frictional characteristics of water-lubricated ball bearing are reported.

실험계획법을 이용한 고온 고분자 전해질 막 연료전지의 운전조건 최적화 연구 (Study on Optimization of Operating Conditions for High Temperature PEM Fuel Cells Using Design of Experiments)

  • 김진태;김민진;손영준
    • 한국수소및신에너지학회논문집
    • /
    • 제24권1호
    • /
    • pp.50-60
    • /
    • 2013
  • High temperature proton exchange membrane fuel cells (PEMFCs) using phosphoric acid (PA) doped polybenzimidazole (PBI) membranes have been concentrated as one of solutions to the limits with traditional low temperature PEMFCs. However, the amount of reported experimental data is not enough to catch the operational characteristics correlated with cell performance and durability. In this study, design of experiments (DOE) based operational optimization method for high temperature PEMFCs has been proposed. Response surface method (RSM) is very useful to effectively analyze target system's characteristics and to optimize operating conditions for a short time. Thus RSM using central composite design (CCD) as one of methodologies for design of experiments (DOE) was adopted. For this work, the statistic models which predict the performance and degradation rate with respect to the operating conditions have been developed. The developed performance and degradation models exhibit a good agreement with experimental data. Compared to the existing arbitrary operation, the expected cell lifetime and average cell performance during whole operation could be improved by optimizing operating conditions. Furthermore, the proposed optimization method could find different new optimal solutions for operating conditions if the target lifetime of the fuel cell system is changed. It is expected that the proposed method is very useful to find optimal operating conditions and enhance performance and durability for many other types of fuel cell systems.

대체 프레온계 냉매를 이용하는 이원 냉동시스템의 성능예측 (Prediction on Performance of Cascade Refrigeration System using Alternative Freon Refrigerants)

  • 노건상
    • 한국기계기술학회지
    • /
    • 제13권1호
    • /
    • pp.73-79
    • /
    • 2011
  • In this paper, cycle performance analysis of cascade refrigeration system using alternative FREON refrigerants are presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include subcooled and superheated degree, and evaporating and condensing temperature, temperature difference of cascade heat exchanger in cascade refrigeration system. The COP of cascade refrigeration system increases with the increasing subcooled degree, but there is no significant changes with the increasing superheated degree. The COP of cascade refrigeration system depends on evaporating and condensing temperatures of cascade heat exchanger. Therefore, subcooled degree, evaporating and condensing temperature of cascade heat exchanger using alternative FREON refrigerants have an effect on the COP of this system. In this paper, COP of cascade refrigeration system using R23 for low temperature system and R507A for high temperature system is higher 8 ~ 29 % than using R13 for low temperature system and R22 for high temperature system.