• Title/Summary/Keyword: High temperature performance

Search Result 3,887, Processing Time 0.033 seconds

An Analysis Using Numerical Model of Composite Multi-Layer Insulation for SOFC (SOFC용 고온 적층 단열재의 해석적 고찰)

  • CHOI, CHONGGUN;HWANG, SEUNG-SIK;CHOI, GYU-HONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.540-548
    • /
    • 2019
  • This study was conducted to develop insulation for solid oxide fuel cell (SOFC). The developed insulation is based on the lamination technology and the radiation shielding technology of the satellite insulation. The insulation material is consisting of insulation material for conduction resistance, spacer, and radiation shielding material. The experimental apparatus consisting vacuum bell jar, pump, heater and temperature recording device has developed to verify the performance of the insulation. The experimental values were used as reference data for the modeling development. In this paper, heat transfer is assumed to be one- dimensional phenomena for the prediction of insulation performance and internal temperature distribution in high temperature region of SOFC. The developed model was used to compare the performance difference of insulation types according to composition materials. The analysis result shows that the insulation including spacer and radiation shielding has better heat insulation performance than other cases. In this study, the thickness reduction effect of about 20% was shown compared to the insulation including only conductive material. It is noted that the radiant shielding material should be carefully selected for durability, because SOFC insulation should be used for a long time at high temperature.

Reactive Synthesis of ZrB2-based Ultra High Temperature Ceramics

  • Liu, Hai-Tao;Zhang, Guo-Jun
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.308-317
    • /
    • 2012
  • Reactive processing, such as reactive hot pressing (RHP) and reactive spark plasma sintering (R-SPS), is effective densification method to prepare $ZrB_2$-based ultra high temperature ceramics (UHTCs). The present paper reviewed some typical reactive processing of $ZrB_2$-based UHTCs. All the reactions from the starting materials in the reactive processing are thermodynamically favorable, which generate enough energy and driving force for the densification of the final products under a relatively low temperature. Besides, compared with non-reactive processing, anisotropic $ZrB_2$ grains, such as $ZrB_2$ platelets, can only be obtained in the reactive processing, resulting in an improvement of the mechanical properties.

Influence of Different Environmental Conditions on Cocoon Parameters and Their Effects on Reeling Performance of Bivoltine Hybrids of Silkworm, Bombyx mori. L.

  • Gowda B. Nanje;Reddy N. Mal
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.14 no.1
    • /
    • pp.15-21
    • /
    • 2007
  • Three newly authorized bivoltine silkworm hybrids namely, $CSR2{\times}CSR4$ (productive single hybrid), $(CSR6{\times}CSR26){\times}(CSR2{\times}CSR27)$ (productive double hybrid) and $CSR18{\times}CSR19$ (robust single hybrid) were chosen for the present study. These hybrids were subjected to different temperature and humidity treatments i.e., $25{\pm}$1^{\circ}C and RH $65{\pm}5%$ (control), $30{\pm}1^{\circ}C$, with combinations of low relative humidity (RH $65{\pm}5%$) and high RH ($85{\pm}5%$) at different stages during rearing and spinning of silkworm larvae. The larvae of after 3rd moult were subjected to different thermal and humidity stress till the assessment of cocoon traits. The comparative rearing and reeling performance clearly indicated that the deleterious effect of high temperature and high RH was more pronounced for the majority of traits such as cocoon uniformity, cocoon weight, shell weight, shell percentage, reelability, filament length, raw silk percentage raw silk recovery denier and waste percentage on silk weight than other temperature and RH treatments and this effect was almost similar for all three silkworm hybrids studied. The present investigation clearly indicate that the deleterious effect of high temperature and high RH was more pronounced on rearing and spinning of silkworm larvae than other temperature and RH treatments and similar effect was noticed for all the three silkworm hybrids studied. The cocoon characters can be improved by providing ideal environmental conditions even during spinning stage of larvae affected with high temperature and RH. The study also suggest that high temperature and low humidity has greater effect during rearing stage than spinning stage.

High-temperature Structural Analysis of Small-scale Prototype of Process Heat Exchanger (III) (공정열교환기 소형 시제품에 대한 고온구조해석(III))

  • Song, Kee-Nam;Lee, Heong-Yeon;Kim, Chan-Soo;Hong, Seong-Duk;Park, Hong-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.2
    • /
    • pp.191-200
    • /
    • 2011
  • A PHE (Process Heat Exchanger) is a key component of nuclear hydrogen system for massive production of hydrogen; the PHE transfers the very high temperature heat ($950^{\circ}C$) generated from the VHTR (Very High Temperature Reactor) to a chemical reaction. The Korea Atomic Energy Research Institute developed a small-scale gas loop for testing the performance of VHTR components and manufactured a modified PHE prototype for carrying out the testing in the gas loop. In this study, as a part of the evaluation of the high-temperature structural integrity of the modified PHE prototype which is scheduled to test in the gas loop, we carried out high-temperature structural analysis modeling, macroscopic thermal and structural analysis of the PHE prototype under the gas loop test conditions as a precedent study before carrying out the performance test in the gas loop. The results obtained in this study will be used to design the performance test setup for the modified PHE prototype.

The Study on Performance Characteristics due to the Superheat Temperature of $NH_3$ Refrigeration System (과열도 변화에 의한 $NH_3$ 냉동장치의 성능특성 연구)

  • Jeong, Sang-Sin;Kwon, Il-Wook;Ha, Ok-Nam
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1334-1339
    • /
    • 2004
  • Nowadays CFCs and HCFCs refrigerants are restricted because it cause depletion of ozone layer. Accordingly, this experiment apply the $NH_3$ gas and not CFCs and HCFCs for refrigerant to study the performance characteristic from the superheat control and improve the energy efficiency from the high performance. The condensing pressure of refrigeration system is increased from 14.5bar to 16bar by 0.5bar and superheat temperature is increased from $0^{\circ}C$ to $10^{\circ}C$ by $1^{\circ}C$ at each condensing pressure. As the result of experiment, when the superheat temperature is $1^{\circ}C$ at each condensing pressure, the refrigeration system has the high performance.

  • PDF

Performance Analysis of Turbofan Engine for Turbine Cooling Design (터빈 냉각설계를 위한 터보팬 엔진의 성능해석)

  • Kim, Chun-Taek;Rhee, Dong-Ho;Cha, Bong-Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.5
    • /
    • pp.27-31
    • /
    • 2012
  • Turbine inlet temperature is steadily increasing to achieve high specific thrust and efficiency of gas turbine engines. Turbine cooling technology is essential to increase turbine inlet temperature. For this study, a small or medium sized aircraft engine of 10,000 lbf class with the turbine inlet temperature of $1,400^{\circ}C$, the engine overall pressure ratio of 32.2, and the bypass ratio of 5 was set as the baseline model and its performance analysis was performed at the design point. The engine has the performance of 10,013 lbf thrust and the specific fuel consumption of 0.362 lbm/hr/lbf. The thrust and the specific fuel consumption of the baseline model were compared with those of similar class engines. Based on these results, the turbine design requirements were assigned. In addition, the parametric analysis of the engine, related to aerodynamic and cooling design of the high pressure turbine, was performed. Based on the baseline model engine, the influence of turbine inlet temperature, cooling flow ratio, and high pressure turbine efficiency variations on the engine performance was analyzed.

Effects of Hot Environment and Dietary Protein Level on Growth Performance and Meat Quality of Broiler Chickens

  • Gu, X.H.;Li, S.S.;Lin, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.11
    • /
    • pp.1616-1623
    • /
    • 2008
  • This study was conducted to determine the effect of hot environment and dietary crude protein level (CP) on performance, carcass characteristics, meat visual quality, muscle chemical composition and malondialdehyde (MDA) concentration of tissues in broilers. Two hundred and sixteen 21-d old Arbor Acre broilers were used in a $4\times3$ factorial arrangement and randomly reared in 4 environmental chambers and fed on 3 diets with different CP levels for 3 weeks. The results showed: (1) when air temperature (AT) rose to $33^{\circ}C$, average daily feed intake, average daily gain, carcass weight, right breast meat weight, left thigh and drumstick meat weight decreased (p<0.05) and feed conversion rate decreased (p<0.05), but the ratio of carcass to live weight and of left thigh and drumstick meat weight to carcass weight increased (p<0.05). (2) There were significant differences in pH and shear force in breast meat, and shear force, L* and a* in thigh meat (p<0.01 or 0.05) among hot environments. Dietary CP level tended to affect breast meat pH and pH and L* of thigh meat (p<0.06 or 0.09). Compared to the normal temperature ($22^{\circ}C$), low temperature ($15^{\circ}C$) and hot humid (AT $33^{\circ}C$, relative humidity (RH) 80%) treatments significantly (p<0.05) decreased the tenderness of thigh meat. L* and a* value in thigh meat under high temperature treatments, regardless of RH, were higher (p<0.05) than those under normal temperature. (3) Protein content in breast and thigh meat of broilers fed under high temperature ($33^{\circ}C$) was lower (p<0.05) than that under $22^{\circ}C$, but fat content had an adverse change. High temperature ($33^{\circ}C$) increased the moisture of breast meat significantly (p<0.05). Protein content in breast meat increased significantly (p<0.05), in which fat content had an adverse change (p<0.05), when the dietary protein rose. (4) MDA concentration in liver and breast meat under hot humid (AT $33^{\circ}C$, RH 80%) treatment increased markedly (p<0.05). (5) High humidity could sharpen the bad effect of high temperature on performance, carcass yield and choice cuts, crude protein and moisture content in breast meat. It was concluded that a hot environment could affect the performance and meat quality of broiler chicks more significantly than CP level and that high humidity would aggravate the bad influence of high temperature on the broiler.

Effect of the Heat Exchange between Low and High Temperature Refrigerant on the Heat Pump Performance (저온측과 고온측 냉매간 열교환이 열펌프의 성능특성에 미치는 영향)

  • 이건중;송현갑
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1999.12a
    • /
    • pp.211-218
    • /
    • 1999
  • The ambient air is commonly used as low-temperature heat sources for heat pump operation. However, the coefficient of performance (COP) of the air -water heat pump is decreased with the ambient air temperature drop. In this study to solve this problem , the AVACTHE(Automatic Variable Area Capillary Type Heat Exchanger) with 3 levels of heat exchange area(0, 1495.4, 1794.5$\textrm{cm}^2$) was installed in the refrigerant circuit of the heat pump. The AVACTHE effect on the performance of heat pump was tested with the ambient air temperature variation. The high level COP of the heat pump could be achieved by the AVACTHE installation when below -5$^{\circ}C$ of the ambient air temperature.

  • PDF

Studies on the Effect of High Temperature on Fl Hybrids Between Polyvoltine and Bivoltine Silkworm Races of Bombyx mori L.

  • Kumar, N.Suresh;Yamamoto, T.;Basavaraja, H.K.;Datta, R.K.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.2 no.2
    • /
    • pp.123-127
    • /
    • 2001
  • In order to introduce bivoltine races in a tropical country like India, it is necessary to have stability in cocoon crop under high temperature environments. Unlike any temperate country like Japan, the rearing conditions/environment, climatic conditions, quality of mulberry leaf and incidence of diseases are unpredictable in India. Geneticists and breeders of all the sericultural countries have experienced the influence of environment during the process of breeding. in order to select efficiently the breeds with high temperature tolerance, it is verb important to analyse clearly the heritability nature of high temperature tolerance. In light of the above, the present study was undertaken to determine the effect of high temperature treatment of (A) $35{\pm}1^{\circ}C$ and 85${\pm}$5% RH for 24 hrs continuously, (B) $35{\pm}1^{\circ}C$ and 85${\pm}$5% RH for 48 hrs continuously and (C) the control (25${\pm}1^{\circ}$ and 65${\pm}$5% RH in the normal rearing condition from the $3^{rd}of5^{th}$ instar on the pure races such as Moria, Nl37 and Cl46 as well as their Fl hybrids. The overall performance indicate that the hybrids are mare tolerant than the pure races. it was also observed that the overall performance declined in those batches where 48 hrs treatment was given. The most interesting observation noticed in this study was that there was maternal effect regarding temperature tolerance as evident from the better performance of those hybrids where the female parent used was more tolerant as pure race.

  • PDF

Performance and Carcass Composition of Broilers under Heat Stress : II. The Effects of Dietary Lysine

  • Hussein, E.O.S.;Al-Batshan, H.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.6
    • /
    • pp.923-931
    • /
    • 1999
  • An experiment was conducted to determine the effect of lysine on performance and carcass composition of broilers under heat stress during the grower period (3-6 weeks). A factorial arrangement of three levels of dietary protein (18, 20, and 22%), three levels of dietary lysine (1.26, 1.39, and 1.52%), and two rearing temperature regimens were used in this study. Birds were kept under either moderate temperature ($24{\pm}1^{\circ}C/24h$) or hot cycling temperature ($26-34^{\circ}C/6h$, $34{\pm}1^{\circ}C/12h$, and $34-26^{\circ}C/6h$). Body weight (BW), weight gain (WG), feed intake (FI), feed conversion (FE), carcass weight (CW), carcass yield (CY), and percentages of breast meat (BM), abdominal fat (AF), drumsticks (DS), and thighs (TH) were determined at the end of experiment. Exposure to high ambient temperature significantly (p<0.05) decreased BW, WG, FI, FE, CW, BM, AF, and increased CY, DS, and TH. High dietary protein significantly (p<0.05) decreased AF and TH, and improved CW only under moderate temperature, resulting in significant (p<0.05) protein by temperature interaction. High dietary lysine significantly (p<0.05) decreased BW, WG, FI, CW, CY and AF, while BM was reduced only when high dietary protein was fed, resulting in significant (p<0.05) protein by lysine interaction. It is concluded that increasing dietary lysine adversely affected broilers' performance and carcass composition irrespective of rearing temperature.