• Title/Summary/Keyword: High temperature performance

Search Result 3,904, Processing Time 0.034 seconds

The Electrochemical Property Studies on Polyacenic Semiconductor Anode Material (음극 폴리아센 반도체 재료의 전기화학적 특성연구)

  • Kim Han-Joo;Park Jong-Eun;Son Won-Keun;Lee Hong-Ki;Park Soo-Gil;Lee Ju-Seong
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.3
    • /
    • pp.134-137
    • /
    • 1999
  • The polyacenic semiconductor material (PAS) electrode prepared by the pyrolytic treatment of phenol-formaldehyde resin is one of useful electrodes. As an anode material of lithium rechargeable batteries, amorphous carbon materials have been studied extensively because of their high electrochemcal performance and cyclicability. Carbon materials do not lead to the formation of lithium dendrite which is one of the most serious problems in applying Li-based materials to an electrode of batteries. The polyacene materials prepared from phenol resin at relatively low temperatures $(550\~750^{\circ}C)$ show a highly Li\doped state up to $C_2Li$ state without liberation of Li cluster. We prepared each polyacene materials at various temperature and investigated electro- chemical properties. We tried to change the mole ratio of [H]/[C] which is $0.24\~0.4$ range. Considering of electrochemical properties of PAS material, the PAS material is one of the most suitable materials for electrodes of a polymer battery.

Electrochemical Properties of Ionic Liquid Composite Poly(ethylene oxide)(PEO) Solid Polymer Electrolyte (이온성 액체 복합 Poly(ethylene oxide)(PEO) 고체 고분자 전해질의 전기화학적 특성)

  • Park, Ji-Hyun;Kim, Jae-Kwang
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.3
    • /
    • pp.101-106
    • /
    • 2016
  • In this study, we prepared an ionic liquid composite solid polymer electrolyte (PEO-LiTFSI-$Pyr_{14}TFSI$) with poly(ethylen oxide), lithium bis(trifluoromethanesulfonyl)imide, N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide by blending-cross linking process. Although the PEO-LiTFSI-$Pyr_{14}TFSI$ composite solid polymer electrolyte displayed a small peak at 4.4 V, it had high electrochemical oxidation stability up to 5.7 V. Ionic conductivity of the PEO-LiTFSI-$Pyr_{14}TFSI$ composite solid polymer electrolyte increased with increasing temperature from $10^{-6}S\;cm^{-1}$ at $30^{\circ}C$ to $10^{-4}S\;cm^{-1}$ at $70^{\circ}C$. To investigate the electrochemical properties, the PEO-LiTFSI-$Pyr_{14}TFSI$ composite solid polymer electrolyte assembled with $LiFePO_4$ cathode and Li-metal anode. At 0.1 C-rate, the cell delivered $40mAh\;g^{-1}$ for $30^{\circ}C$, $69.8mAh\;g^{-1}$ for $40^{\circ}C$ and $113mAh\;g^{-1}$ for $50^{\circ}C$, respectively. The PEO-LiTFSI-$Pyr_{14}TFSI$ solid polymer electrolyte exhibited good charge-discharge performance in Li/SPE/$LiFePO_4$ cells at $50^{\circ}C$.

3D Finite Element Simulation of Pellet-Cladding Mechanical Interaction (3차원 유한요소를 이용한 핵연료와 피복관 기계적 거동 해석)

  • Seo, Sang Kyu;Lee, Sung Uk;Lee, Eun Ho;Yang, Dong Yol;Kim, Hyo Chan;Yang, Yong Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.5
    • /
    • pp.437-447
    • /
    • 2016
  • In a nuclear power plant, the fuel assembly, which is composed of fuel rods, burns, and the high temperature can generate power. The fuel rod consists of pellets and a cladding that covers the pellets. It is important to understand the pellet-cladding mechanical interaction with regard to nuclear safety. This paper proposes simulation of the PCMI. The gap between the pellets and the cladding, and the contact pressure are very important for conducting thermal analysis. Since the gap conductance is not known, it has to be determined by a suitable method. This paper suggests a solution. In this study, finite element (FE) contact analysis is conducted considering thermal expansion of the pellets. As the contact causes plastic deformation, this aspect is considered in the analysis. A 3D FE module is developed to analyze the PCMI using FORTRAN 90. The plastic deformation due to the contact between the pellets and the cladding is the major physical phenomenon. The simple analytical solution of a cylinder is proposed and compared with the fuel rod performance code results.

Bio-floc technology application in olive flounder, Paralichthys olivaceus aquaculture according to the difference of closed recirculating systems (바이오플락 기술을 활용한 순환침전시스템에 따른 넙치(Paralichthys olivaceus)의 양성)

  • Cho, Yeong-Rok;Kim, Hyun-Soo;Kim, Su Kyoung;Kim, Su-Kyoung;Kim, Seok-Ryel;Hur, Young Baek;Kim, Jun-Hwan
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.2
    • /
    • pp.129-135
    • /
    • 2019
  • Juvenile Paralichthys olivaceus (mean weight 685.3±36.7 g) were raised in different and closed recirculating bio-floc system (control, bio-ball, and shelter) for 7 months. The water environment such as water temperature, dissolved oxygen, salinity, pH, and alkalinity according to the difference of closed recirculating system remained stable during the rearing period. No significant changes were observed in dissolved inorganic nitrogen such as ammonia, nitrite, and nitrate were observed in different closed recirculation system. The final weights according to the difference of closed recirculating were 1,524 g (control), 1,674 g (bio-ball), and 1,630 g (shelter). The survival rate was higher than 98%, and the final FCRs (Feed coefficient ratio) were 1.2, 1.1, and 1.2. The results of this study indicated high growth and survival rate in all systems.

Numerical simulation of gasification of coal-water slurry for production of synthesis gas in a two stage entrained gasifier (2단 분류층 가스화기에서 합성가스 생성을 위한 석탄 슬러리 가스화에 대한 수치 해석적 연구)

  • Seo, Dong-Kyun;Lee, Sun-Ki;Song, Soon-Ho;Hwang, Jung-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.417-423
    • /
    • 2007
  • Oxy-gasification or oxygen-blown gasification, enables a clean and efficient use of coal and opens a promising way to CO2 capture. The coal gasification process of a slurry feed type, entrained-flow coal gasifier was numerically predicted in this paper. The purposes of this study are to develop an evaluation technique for design and performance optimization of coal gasifiers using a numerical simulation technique, and to confirm the validity of the model. By dividing the complicated coal gasification process into several simplified stages such as slurry evaporation, coal devolatilization, mixture fraction model and two-phase reactions coupled with turbulent flow and two-phase heat transfer, a comprehensive numerical model was constructed to simulate the coal gasification process. The influence of turbulence on the gas properties was taken into account by the PDF (Probability Density Function) model. A numerical simulation with the coal gasification model is performed on the Conoco-Philips type gasifier for IGCC plant. Gas temperature distribution and product gas composition are also presented. Numerical computations were performed to assess the effect of variation in oxygen to coal ratio and steam to coal ratio on reactive flow field. The concentration of major products, CO and H2 were calculated with varying oxygen to coal ratio (0.2-1.5) and steam to coal ratio(0.3-0.7). To verify the validity of predictions, predicted values of CO and H2 concentrations at the exit of the gasifier were compared with previous work of the same geometry and operating points. Predictions showed that the CO and H2 concentration increased gradually to its maximum value with increasing oxygen-coal and hydrogen-coal ratio and decreased. When the oxygen-coal ratio was between 0.8 and 1.2, and the steam-coal ratio was between 0.4 and 0.5, high values of CO and H2 were obtained. This study also deals with the comparison of CFD (Computational Flow Dynamics) and STATNJAN results which consider the objective gasifier as chemical equilibrium to know the effect of flow on objective gasifier compared to equilibrium. This study makes objective gasifier divided into a few ranges to study the evolution of the gasification locally. By this method, we can find that there are characteristics in the each scope divided.

  • PDF

The Study on the Catalytic Performance and Characterization of La0.9Sr0.1Cr0.7B0.3O3±δ (B=Mn, Ni, Fe, Ru) for High Temperature Water-gas Shift Reaction with Simuated Coal-derived Syngas (모사된 석탄가스화 합성가스를 이용한 La0.9Sr0.1Cr0.7B0.3O3±δ (B=Mn, Ni, Fe, Ru)의 수성가스전이반응 활성 및 특성에 관한 연구)

  • Lee, Seul-Gi;Kwak, Jaehoom;Sohn, Jung Min
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.6
    • /
    • pp.543-549
    • /
    • 2013
  • In this study, $La_{0.9}Sr_{0.1}Cr_{0.7}M_{0.3}O_{3{\pm}{\delta}}$ (M=Mn, Ru, Fe, Ni) were prepared by sol-gel method and water gas shift reaction with simulated coal-derived syngas between $400{\sim}650^{\circ}C$ was conducted to evaluate the catalytic activity of prepared catalysts. Physico-chemical properties were characterized by XRD, BET, SEM-EDS and TPR. The formation of perovskite crystallite, $LaCrO_3$ was confirmed and the highest surface area was measured with $La_{0.9}Sr_{0.1}Cr_{0.7}Mn_{0.3}O_{3{\pm}{\delta}}$. Equilibrium conversion of CO above $550^{\circ}C$ was achieved except $La_{0.9}Sr_{0.1}Cr_{0.7}Fe_{0.3}O_{3{\pm}{\delta}}$. and methanation reaction was carried out as side reaction of water gas shift reaction with $La_{0.9}Sr_{0.1}Cr_{0.7}Ni_{0.3}O_{3{\pm}{\delta}}$ and $La_{0.9}Sr_{0.1}Cr_{0.7}Ru_{0.3}O_{3{\pm}{\delta}}$. Conclusively, $La_{0.9}Sr_{0.1}Cr_{0.7}M_n{0.3}O_{3{\pm}{\delta}}$ was the most suitable catalyst of water gas shift reaction above $500^{\circ}C$ for CO conversion and hydrogen production.

A Study on Field Experiment and Numerical Modeling for Efficiency Analysis of Selective Withdrawal in Imha Reservoir (임하호 선택취수 효과분석을 위한 현장실험 및 수치해석 연구)

  • Kim, Tae Won;Kim, Young Do;Yi, Yong-Kon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2B
    • /
    • pp.113-121
    • /
    • 2012
  • When a heavy rain brings flooding, a high turbid water is flowing into a reservoir. In this study, the effectiveness of the intake structures for the selective withdrawal from the various levels of a stratified reservoir was evaluated by the field experiments and the numerical modeling of the three-dimensional approaching flows. The temperature, the turbidity, and the velocity fields for the selective withdrawal were measured using both YSI6600EDS and YSI6600ADV, respectively. A threedimensional model, FLOW-3D, was used to predict the performance of the intake tower in Imha reservoir. The comparisons of the vertical velocity field showed a good agreement with the field measurements. The efficiency of the turbid-water elimination of the selective withdrawal method from low levels was higher up to 46% than that of the surface withdrawal. From the analysis of the numerical simulation, the efficiency of turbidity elimination increased by 10% for the selective withdrawal from middle levels, and by 30% from low levels. These results showed that the selective withdrawals from middle and low levels are more effective than the surface-water intake. The similar results were obtained by the one-dimensional model, SELECT, which is much more computationally time-efficient.

Fuel Properties of Various Biodiesels Derived Vegetable Oil (다양한 식물성유지에서 유래된 바이오디젤의 연료 특성)

  • Kim, Jae-Kon;Park, Jo Yong;Jeon, Cheol Hwan;Min, Kyong-Il;Yim, Eui-Soon;Jung, Choong-Sub;Lee, Jin-Hui
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.35-48
    • /
    • 2013
  • Biodiesel is an alternative diesel fuel which can be obtained from the transesterification of vegetable oils, animal fats and waste cooking oil. The objective of this study is to evaluate the properties of biodiesel obtained from different feedstocks (soybean, waste cooking, rapeseed, cottonseed and palm oils). The biodiesel derived from different feedstocks was analyzed for FAME (fatty acid methyl esther) content, kinematic viscosity, flash point, CFPP (cold filter plugging point) and glycerin content. The quality of biodiesel was tested according to the Korean and European standard (EN14214, requirements and test method for biodiesel fuel). The biodiesels derived from soybean, waste cooking, rapeseed and cottonseed oils contain high amount of unsaturated fatty acid, while palm biodiesel is dominated by saturated fatty acid. The fuel properties of biodiesel, such as low temperature performance, kinematic viscosity and oxidation stability are correlated with the FAME composition components in biodiesel.

Isolation and characterization of a novel gossypol-degrading bacteria Bacillus subtilis strain Rumen Bacillus Subtilis

  • Zhang, Yunhua;Zhang, Zhengyou;Dai, Li;Liu, Ying;Cheng, Maoji;Chen, Lijuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.1
    • /
    • pp.63-70
    • /
    • 2018
  • Objective: The aim of the study was to isolate gossypol-degrading bacteria and to assess its potential for gossypol degradation. Methods: Rumen liquid was collected from fistulated cows grazing the experimental pasture. Approximately 1 mL of the rumen liquid was spread onto basal medium plates containing 2 g/L gossypol as the only source of carbon and was then cultured at $39^{\circ}C$ to isolate gossypol-degrading bacteria. The isolated colonies were cultured for 6 h and then their size and shape observed by microscope and scanning electron microscope. The 16S rRNA gene of isolated colonies was sequenced and aligned using National Center for Biotechnology Information-Basic Local Alignment Search Tool. The various fermentation conditions, initial pH, incubation temperature, inoculum level and fermentationperiod were analyzed in cottonseed meal (CSM). The crude protein (CP), total gossypol (TG), and free gossypol (FG) were determined in CSM after fermentation with isolated strain at $39^{\circ}C$ for 72 h. Results: Screening results showed that a single bacterial isolate, named Rumen Bacillus Subtilis (RBS), could use gossypol as a carbon source. The bacterium was identified by 16S rDNA sequencing as being 98% homologous to the sequence of Bacillus subtilis strain GH38. The optimum fermentation conditions were found to be 72 h, $39^{\circ}C$, pH 6.5, moisture 50%, inoculum level $10^7cell/g$. In the optimum fermentation conditions, the FG and TG content in fermented CSM decreased 78.86% and 49% relative to the control. The content of CP and the essential amino acids of the fermented CSM increased respectively, compared with the control. Conclusion: The isolation of a gossypol-degrading bacterium from the cow rumen is of great importance for gossypol biodegradation and may be a valuable potential source for gossypol-degradation of CSM.

The Optimum Conditions for the Simultaneous Determination of Neurotransmitters in Rat Brain Striatum by High Performance Liquid Chromatography with Electrochemical Detection (HPLC-ECD를 이용한 흰쥐 뇌의 선조체 중 신경전달물질의 동시분석시 최적 조건)

  • Kang, Jong-Seong;Mun, Min-Seon;Shin, Hyung-Seon;Lee, Soon-Chul
    • Analytical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.215-220
    • /
    • 1995
  • A simple, efficient and sensitive method was described for the simultaneous determination of catecholamine, indoleamine and related metabolites from the homogenates of the rat brain striatum by HPLC-ECD. The optimum mobile phase on a reverse phase $C_{18}$ column was 35mM sodium acetate buffer(included 10mM citric acid, 0.13mM $Na_4EDTA$, 0.58mM SOS, pH3-4):MeOH=85:15. The column temperature was $30^{\circ}C$. Dopamine(DA), 3, 4-dihydroxyphenyl acetic acid(DOPAC), homovanilic acid(HVA), 5-hydroxyindole acetic acid(5-HIAA), serotonin(5-HT) and noradrenaline(NA) could be separated and analysed to very small amount. The detection limits of this method were 2~10pg per injection for all components. The effects of age and sex of rat on the contents of the catecholamines and their metabolites in rat brain striatum were studied. The levels of DA and 5-HT contents of the 7 week old female rats were higher than those of the 7 week old male rats. As the age of rat increases, the contents of DOPAC increased significantly.

  • PDF