• Title/Summary/Keyword: High temperature performance

Search Result 3,904, Processing Time 0.04 seconds

Development of Energy Saving Aeration Panel for Aerating in Activated Sludge System (활성 슬러지조 폭기를 위한 에너지 절감형 판형 멤브레인 산기장치의 개발)

  • Kim, Ji Tae;Tak, Hyon Ki;Kim, Jong Kuk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.6
    • /
    • pp.414-420
    • /
    • 2012
  • In an effort to commercialization of energy saving aeration apparatus, panel-type aeration membranes were prepared from polyurethane sheet of J company in Korea having tensile strength higher than $400kg_f/cm^2$ with thickness of 0.5mm. Micropores of 100 m size were made by poring technique utilizing needles. From lab-tests in 450 L water tank at temperature of $20^{\circ}C$, the performance of aeration panels at 40 L/min aeration rate showed 5 mg/L DO in less than 3 minutes approaching saturation point of 8 mg/L within 8 minutes. The results show very high efficiency with $K_{La(15)}$ ($16.34hr^{-1}$), Standard oxygen transfer efficiency (SOTE 54.7%) and Standard aeration efficienct (SAE 7.88 kg/kwh). Other pilot scale test in a $2m^3$ water tank with water temperature ($19^{\circ}C$) and aeration rate (30 L/min) showed DO exceeding 5 mg/L within 8 minutes along with $K_{La(15)}$ ($5.8hr^{-1}$), SOTE (42.1%) and SAE (6.41 kg/kwh). These efficiencies represent 2~2.5 times higher than conventional aeration devices. Especially, the achievement of higher Oxygen Transfer Rate indicate higher commercial viability. Conventional aeration devices when applied to clean water and wastewater frequently cause problems due to differences in actual Oxygen Transfer Rate. Our actual tests with $40^{\circ}C$ animal farm wastewater resulted very high efficiencies with Oxygen transfer efficiency ($OTE_f$ 22.1%) and $OTE_{pw40}$ (39.6%).

Genotype $\times$ Environment Interaction of Rice Yield in Multi-location Trials (벼 재배 품종과 환경의 상호작용)

  • 양창인;양세준;정영평;최해춘;신영범
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.6
    • /
    • pp.453-458
    • /
    • 2001
  • The Rural Development Administration (RDA) of Korea now operates a system called Rice Variety Selection Tests (RVST), which are now being implemented in eight Agricultural Research and Extension Services located in eight province RVST's objective is to provide accurate yield estimates and to select well-adapted varieties to each province. Systematic evaluation of entries included in RVST is a highly important task to select the best-adapted varieties to specific location and to observe the performance of entries across a wide range of test sites within a region. The rice yield data in RVST for ordinary transplanting in Kangwon province during 1997-2000 were analyzed. The experiments were carried out in three replications of a random complete block design with eleven entries across five locations. Additive Main effects and Multiplicative Interaction (AMMI) model was employed to examine the interaction between genotype and environment (G$\times$E) in the biplot form. It was found that genotype variability was as high as 66%, followed by G$\times$E interaction variability, 21%, and variability by environment, 13%. G$\times$E interaction was partitioned into two significant (P<0.05) principal components. Pattern analysis was used for interpretation on G$\times$E interaction and adaptibility. Major determinants among the meteorological factors on G$\times$E matrix were canopy minimum temperature, minimum relative humidity, sunshine hours, precipitation and mean cloud amount. Odaebyeo, Obongbyeo and Jinbubyeo were relatively stable varieties in all the regions. Furthermore, the most adapted varieties in each region, in terms of productivity, were evaluated.

  • PDF

Removal of Alkali Metal Ion using Inorganic Ion Exchanger (무기이온교환제를 이용한 알카리 금속이온 제거)

  • Ha, Ji-Won;Yi, Kwang Bok;Lee, Si Hyun;Rhee, Young-Woo;Kim, Jong-Nam
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.423-429
    • /
    • 2008
  • Currently, Ash-free clean coal producing process by solvent extraction is under development. The produced ash-free clean coal can be directly combusted in a gas turbine which results in substantial improvement of power generation efficiency. However, the clean coal produced by the solvent extraction still contain trace amount of alkali metal which may cause corrosion on turbine blades during the direct combustion. In present work ${\alpha},{\beta}$-metal (Zr and Ti) phosphates and H-Y zeolite were synthesized and their ion exchange characterizations were investigated for the application on alkali metal removal for clean coal production. $Na^+$ ion removal capacities of the metal phosphates and H-Y zeolite were measured and compared in both aqueous solution (100 ppmw, $Na^+$) and coal dissolved N-methyl-2-pyrrolidone (NMP, 12 ppmw $Na^+$) at elevated temperature. In aqueous solution, the ${\beta}$ form metal phosphates showed very high ion exchange capacities compared to ${\alpha}$ form. ${\beta}$ form metal phosphates also showed higher $Na^+$ removal capacities than H-Y zeolite. In ion exchange medium of NMP, all the ${\alpha}$ form metal phosphates showed over 90% of $Na^+$ ion removal efficiency in the temperature range of 200 to 400 while that of H-Y zeolite decreased as a half when the temperature was over 350. In addition, the regenerated metal phosphates by acid treatment showed no sign of degradation in $Na^+$ removal efficiency. Among the metal phosphates used, $Zr_{0.75}Ti_{0.25}(HPO_4)_2$ showed the best performance in $Na^+$ removal and is expected to be the most suitable inorganic ion exchanger for the alkali metal removal process.

Forecasting Hourly Demand of City Gas in Korea (국내 도시가스의 시간대별 수요 예측)

  • Han, Jung-Hee;Lee, Geun-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.87-95
    • /
    • 2016
  • This study examined the characteristics of the hourly demand of city gas in Korea and proposed multiple regression models to obtain precise estimates of the hourly demand of city gas. Forecasting the hourly demand of city gas with accuracy is essential in terms of safety and cost. If underestimated, the pipeline pressure needs to be increased sharply to meet the demand, when safety matters. In the opposite case, unnecessary inventory and operation costs are incurred. Data analysis showed that the hourly demand of city gas has a very high autocorrelation and that the 24-hour demand pattern of a day follows the previous 24-hour demand pattern of the same day. That is, there is a weekly cycle pattern. In addition, some conditions that temperature affects the hourly demand level were found. That is, the absolute value of the correlation coefficient between the hourly demand and temperature is about 0.853 on average, while the absolute value of the correlation coefficient on a specific day improves to 0.861 at worst and 0.965 at best. Based on this analysis, this paper proposes a multiple regression model incorporating the hourly demand ahead of 24 hours and the hourly demand ahead of 168 hours, and another multiple regression model with temperature as an additional independent variable. To show the performance of the proposed models, computational experiments were carried out using real data of the domestic city gas demand from 2009 to 2013. The test results showed that the first regression model exhibits a forecasting accuracy of MAPE (Mean Absolute Percentage Error) around 4.5% over the past five years from 2009 to 2013, while the second regression model exhibits 5.13% of MAPE for the same period.

Synthesis and Electrochemical Properties of (La0.6Sr0.4)(Co0.2Fe0.8)O3 cathode for SOFC on pH Control Using Modified Oxalate Method (Modified Oxalate Method 의해 합성한 SOFC용(La0.6Sr0.4)(Co0.2Fe0.8)O3 Cathode의 pH 변화에 따른 특성)

  • Lee, Mi-Jai;Choi, Byung-Hyun;Kim, Sei-Ki;Park, Sang-Sun;Lee, Kyung-Hee
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.288-294
    • /
    • 2007
  • The LSCF cathode far Solid Oxide Fuel Cell was investigated to develop high performance unit cell at intermediate temperature by modified oxalate method with different electrolytes and different pH. The LSCF powders employed La, Sr, Co and Fe oxides, oxalic acid, ethanol and $NH_4OH$ solution were synthesized with pH controlled as 2, 6, 7, 8, 9 and 10 at $80^{\circ}C$ Single crystalline phase was obtained from pH $2{\sim}9$. on the other hand, $La_2O_3$ appeared from pH 10. Very fine powder with particle size of 50 nm was obtained at calcination temperature of $800^{\circ}C$ for 4 hours. LSCF cathode synthesized at pH 7 showed the highest electric conductivity in the temperature range of $600^{\circ}C$ to $900^{\circ}C$ its value was 950 S/cm at $900^{\circ}C$ Under same synthesis conditions, polarization resistance of each LSCF cathode was changed with different calcination temperatures. As-prepared powder presented 2.52, 1.54 and $2.58\;{\Omega}$ at $600^{\circ}C$ with ScSZ, 8Y-YSZ and GDC as its electrolyte respectively after calcination at $800^{\circ}C$ for 4 hours.

Improvement of Energy Density in Supercapacitor by Ion Doping Control for Energy Storage System (에너지 저장장치용 슈퍼커패시터 이온 도핑 제어를 통한 에너지 밀도 향상 연구)

  • Park, Byung-jun;Yoo, SeonMi;Yang, SeongEun;Han, SangChul;No, TaeMoo;Lee, Young Hee;Han, YoungHee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.209-213
    • /
    • 2019
  • Recently, demand for high energy density and long cycling stability of energy storage system has increased for application using with frequency regulation (F/R) in power grid. Supercapacitor have long lifetime and high charge and discharge rate, it is very adaptable to apply a frequency regulation in power grid. Supercapacitor can complement batteries to reduce the size and installation of batteries. Because their utilization in a system can potentially eliminate the need for short-term frequent replacement as required by batteries, hence, saving the resources invested in the upkeep of the whole system or extension of lifecycle of batteries in the long run of power grid. However, low energy density in supercapacitor is critical weakness to utilization for huge energy storage system of power grid. So, it is still far from being able to replace batteries and struggle in meeting the demand for a high energy density. But, today, LIC (Lithium Ion Capacitor) considered as an attractive structure to improve energy density much more than EDLC (Electric double layer capacitor) because LIC has high voltage range up to 3.8 V. But, many aspects of the electrochemical performance of LIC still need to be examined closely in order to apply for commercial use. In this study, in order to improve the capacitance of LIC related with energy density, we designed new method of pre-doping in anode electrode. The electrode in cathode were fabricated in dry room which has a relative humidity under 0.1% and constant electrode thickness over $100{\mu}m$ was manufactured for stable mechanical strength and anode doping. To minimize of contact resistance, fabricated electrode was conducted hot compression process from room temperature to $65^{\circ}C$. We designed various pre-doping method for LIC structure and analyzing the doping mechanism issues. Finally, we suggest new pre-doping method to improve the capacitance and electrochemical stability for LIC.

Ammonia Decomposition over Ni Catalysts Supported on Zeolites for Clean Hydrogen Production (청정수소 생산을 위한 암모니아 분해 반응에서 Ni/Zeolite 촉매의 반응활성에 관한 연구)

  • Jiyu Kim;Kyoung Deok Kim;Unho Jung;Yongha Park;Ki Bong Lee;Kee Young Koo
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.19-26
    • /
    • 2023
  • Hydrogen, a clean energy source free of COx emissions, is poised to replace fossil fuels, with its usage on the rise. Despite its high energy content per unit mass, hydrogen faces limitations in storage and transportation due to its low storage density and challenges in long-term storage. In contrast, ammonia offers a high storage capacity per unit volume and is relatively easy to liquefy, making it an attractive option for storing and transporting large volumes of hydrogen. While NH3 decomposition is an endothermic reaction, achieving excellent low-temperature catalytic activity is essential for process efficiency and cost-effectiveness. The study examined the effects of different zeolite types (5A, NaY, ZSM5) on NH3 decomposition activity, considering differences in pore structure, cations, and Si/Al-ratio. Notably, the 5A zeolite facilitated the high dispersion of Ni across the surface, inside pores, and within the structure. Its low Si/Al ratio contributed to abundant acidity, enhancing ammonia adsorption. Additionally, the presence of Na and Ca cations in the support created medium basic sites that improved N2 desorption rates. As a result, among the prepared catalysts, the 15 wt%Ni/5A catalyst exhibited the highest NH3 conversion and a high H2 formation rate of 23.5 mmol/gcat·min (30,000 mL/gcat·h, 600 ℃). This performance was attributed to the strong metal-support interaction and the enhancement of N2 desorption rates through the presence of medium basic sites.

Characteristics of Coal Slurry Gasification under Partial Slagging Operating Condition (부분 용융 운전 조건에서 석탄슬러리 가스화 운전 특성)

  • Lee, Jin Wook;Chung, Seok Woo;Lee, Seung Jong;Jung, Woohyun;Byun, Yong Soo;Hwang, Sang Yeon;Jeon, Dong Hwan;Ryu, Sang Oh;Lee, Ji Eun;Jeong, Ki Jin;Kim, Jin Ho;Yun, Yongseung
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.657-666
    • /
    • 2014
  • Coal gasification technology is considered as next generation clean coal technology even though it uses coal as fuel which releases huge amount of greenhouse gas because it has many advantages for carbon capture. Coal or pet-coke slurry gasification is very attractive technology at present and in the future because of its low construction cost and flexibility of slurry feeding system in spite of lower efficiency compared to dry feeding technology. In this study, we carried out gasification experiment using bituminous coal slurry sample by integrating coal slurry feeding facility and slurry burner into existing dry feeding compact gasifier. Especially, our experiment was conducted under fairly lower operation temperature than that of existing entrained-bed gasifier, resulting in partial slagging operation mode in which only part of ash was converted to slag and the rest of ash was released as fly ash. Carbon conversion rate was calculated from data analysis of collected slag and ash, and then cold gas efficiency, which is the most important indicator of gasifier performance, was estimated by carbon mass balance method. Fairly high performance considering pilot-scale experiment, 98.5% of carbon conversion and 60.4% of cold gas efficiency, was achieved. In addition, soundness of experimental result was verified from the comparison with chemical equilibrium composition and energy balance calculations.

Performance Evaluation of Bio-Membrane Hybrid Process for Treatment of Food Waste Leachate (음식물 침출수 청정화를 위한 파일롯 규모의 생물-분리막 복합공정의 성능 평가 연구)

  • Lee, Myung-Gu;Park, Chul-Hwan;Lee, Do-Hoon;Kim, Tak-Hyun;Lee, Byung-Hwan;Lee, Jin-Won;Kim, Sang-Yong
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.90-95
    • /
    • 2008
  • In this study, a combined process of sequential anaerobic-aerobic digestion (SAAD), fluidized-bed bioreactor (FBBR), and ultrafiltration (UF) for the treatment of small scale food waste leachate was developed and evaluated. The SAAD process was tested for performance and stability by subjecting leachate from food waste to a two-phase anaerobic digestion. The main process used FBBR composed of aerators for oxygen supply and fluidization, three 5 ton reaction chambers containing an aerobic mesophilic microorganism immobilized in PE (polyethylene), and a sedimentation chamber. The HRTs (hydraulic retention time) of the combined SAAD-FBBR-UF process were 30, 7, and 1 day, and the operation temperature was set to the optimal one for microbial growth. The pilot process maintained its performance even when the CODcr of input leachate fluctuated largely. During the operation, average CODcr, TKN, TP, and salt of the effluent were 1,207mg/L, 100mg/L, 50 mg/L, and 0.01 %, which corresponded to the removal efficiencies of 99.4%, 98.6%, 89.6%, and 98.5%, respectively. These results show that the developed process is able to manage high concentration leachate from food waste and remove CODcr, TKN, TP, and salt effectively.

Evaluating the Predictability of Heat and Cold Damages of Soybean in South Korea using PNU CGCM -WRF Chain (PNU CGCM-WRF Chain을 이용한 우리나라 콩의 고온해 및 저온해에 대한 예측성 검증)

  • Myeong-Ju, Choi;Joong-Bae, Ahn;Young-Hyun, Kim;Min-Kyung, Jung;Kyo-Moon, Shim;Jina, Hur;Sera, Jo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.218-233
    • /
    • 2022
  • The long-term (1986~2020) predictability of the number of days of heat and cold damages for each growth stage of soybean is evaluated using the daily maximum and minimum temperature (Tmax and Tmin) data produced by Pusan National University Coupled General Circulation Model (PNU CGCM)-Weather Research and Forecasting (WRF). The Predictability evaluation methods for the number of days of damages are Normalized Standard Deviations (NSD), Root Mean Square Error (RMSE), Hit Rate (HR), and Heidke Skill Score (HSS). First, we verified the simulation performance of the Tmax and Tmin, which are the variables that define the heat and cold damages of soybean. As a result, although there are some differences depending on the month starting with initial conditions from January (01RUN) to May (05RUN), the result after a systematic bias correction by the Variance Scaling method is similar to the observation compared to the bias-uncorrected one. The simulation performance for correction Tmax and Tmin from March to October is overall high in the results (ENS) averaged by applying the Simple Composite Method (SCM) from 01RUN to 05RUN. In addition, the model well simulates the regional patterns and characteristics of the number of days of heat and cold damages by according to the growth stages of soybean, compared with observations. In ENS, HR and HSS for heat damage (cold damage) of soybean have ranged from 0.45~0.75, 0.02~0.10 (0.49~0.76, -0.04~0.11) during each growth stage. In conclusion, 01RUN~05RUN and ENS of PNU CGCM-WRF Chain have the reasonable performance to predict heat and cold damages for each growth stage of soybean in South Korea.