• Title/Summary/Keyword: High temperature performance

Search Result 3,904, Processing Time 0.04 seconds

Effects of extreme heat stress and continuous lighting on growth performance and blood lipid in broiler chickens (연속조명과 폭염 스트레스가 육계의 혈액지질 및 성장능력에 미치는 영향)

  • Park, Sang-Oh;Hwangbo, Jong;Ryu, Chae-Min;Yoon, Jae-Sung;Park, Byung-Sung;Kang, Hwan-Ku;Seo, Ok-Suk;Chae, Hyun-Seok;Choi, Hee-Chul;Choi, Yang-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.78-87
    • /
    • 2013
  • In this study, the effect of extreme heat diet on growth performance, lymphoid organ, blood immunoglobulin and cecum microflora change in broilers exposed to continuous lighting and extreme heat stress (EHS) was studied. Broilers raised under normal environment temperature ($25^{\circ}C$ or extreme heat stress temperature ($33{\pm}2^{\circ}C$, and consumed chow diet (CD) or extreme heat stress diet (EHSD). Five hundred Ross 308 day-old commercial broilers were arranged in a completely randomized block design of 5 treatment groups with 4 repetitions (25 heads per repetition pen). The broilers were divided into: T1 (normal environment+CD), T2 (EHS+CD), T3 (EHS+EHSD in which the tallow in CD was substituted by soy oil and contained 5% molasses), T4 (EHS+EHSD in which the tallow in CD was substituted by soy oil and contained 5% molasses, and 1.5 times more methionine and lysine than CD), and T5 (EHS+EHSD in which the tallow in CD was substituted by soy oil, contained 5% molasses, 1.5 times more methionine and lysine than CD, and 300ppm of vitamin C). The EHS significantly reduced the body weight gain and feed intake. The blood immunoglobulin, bursa of Fabricius, thymus, and spleen weight were significantly reduced when broilers were exposed to EHS. Compared to the normal environment temperature group, the cecum Lactobacillus sp. was low in the EHS treatment group, while Escherichia sp., Salmonella sp. and total aerobic bacteria in the EHS treatment group were high. A statistically significant difference was acknowledged between the treatment groups.

Thermal Property and Fire Resistance of Cellulose Insulation (섬유질 단열재의 열적 특성 및 내화성능)

  • Kwon, Young-Cheol;Seo, Seong Yeon;Kim, Sung Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.203-212
    • /
    • 2005
  • Cellulose insulation is primarily manufactured from recycled newsprint and treated with fire retardants for the fire resistance. Thanks to the fire retardants, it is not combustible and flammable. In addition to that, Its thermal resistance is much better than that of fiberglass or rock wool. It is made from waste paper and easily decayed when it is demolished, and it has small embodied energy. So it is very environment-friendly building material. For broader use of cellulose insulation in buildings in Korea, it is necessary to test its physical performance to compare the results with the requirements on the Korean Building Code. To this end, apparent thermal conductivity (ka) measurements of Korean-made loose-fill cellulose insulations were recently completed using equipment that was built and operated in accordance with ASTM C 518 and the fire resistance was tested in accordance with ASTM C 1485. Korean loose-fill cellulose has thermal conductivity about 5% greater than the corresponding U.S. product at the same density. This is likely due to differences in the recycled material being used. Both spray-applied and loose-fill cellulose insulation lose about 1.5% of their thermal resistivity for $5.5^{\circ}C$ increase in temperature. The fire resistance of cellulose insulation is increased in linear proportion to the increase of the rate of fire retardant. Thanks to the high fire resistance, cellulose insulation can be used as a substitution of Styrofoam or Urethane foam which is combustible. The thermal conductivity of cellulose insulation was $0.037-0.043W/m{\cdot}K$ at the mean specimen temperature from $4-43^{\circ}C$. It corresponds to the thermal resistance of "Na Grade" according to the Korean Building Code. The effect of chemical content on thermal conductivity was negligible for all but the chemical-free specimen which had the highest value for the thermal conductivity over the temperature range tested. The thermal resistance of cellulose insulation is better than that of fiberglass or rock wool, and its fire resistance is higher than that of Styrofoam or Urethane foam. Therefore it can be substituted for those above considering its physical performance. Cellulose insulation is no more expensive than Styrofoam or rock wool, so it is recommended to use it more widely in Korea.

Reaction Characteristics of Oxidation Catalysts for HCCI Engine (HCCI 엔진용 산화촉매의 반응특성)

  • Park, Sung-Yong;Kim, Hwa-Nam;Choi, Byung-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.165-171
    • /
    • 2010
  • The Homogeneous Charge Compression Ignition (HCCI) engine concept allows for both NOx and particulate matter to be reduced simultaneously, and it is a promising way to meet the next environmental challenges. Unfortunately, HCCI combustion often increases CO and HC emissions. The development of oxidation catalyst (OC) requires high conversion efficiency for CO and HC at low temperature. Conventional oxidation catalyst technologies may not be able to convert these emissions because of the saturation of active catalytic sites. The OC used in this study was 600 cpsi cordierite. Three kinds of OC with different amounts of Pt and Pd were used. The influence of the space velocity (SV), $H_2O$ and $O_2$ concentration was also studied. All types of OCs were found to have over 90% CO conversion efficiencies at $170^{\circ}C$. When in the presence of water vapor, CO conversion was increased, but $C_3H_8$ conversion was decreased. The performance of the OC was not influenced by initial the HC concentration. The 2Pt/Pd catalyst was better in terms of thermal aging than the Pt-only catalyst. The $LOT_{50}$ of both fresh and aged OC was increased with increasing SV and with the presence of $H_2O$.

Evaluation of Microcracks in Thermal Damaged Concrete Using Nonlinear Ultrasonic Modulation Technique (비선형 초음파 변조 기법을 이용한 열손상 콘크리트의 미세균열 평가)

  • Park, Sun-Jong;Yim, Hong Jae;Kwak, Hyo-Gyung
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.651-658
    • /
    • 2012
  • This paper concentrates on the evaluation of microcracks in thermal damaged concrete on the basis of the nonlinear ultrasonic modulation technique. Since concrete structure exposed to high temperature accompanies the development of microcracks due to the physical and chemical changes from temperature and exposed time, the adoption of nonlinear approach is required. Instead of using the conventional ultrasonic nondestructive methods which have the limitation in evaluating excessive microcracks, accordingly, a nonlinear ultrasonic modulation method which shows better sensitivity in quantifying microcracks is introduced. Upon the analysis for the modulation of ultrasonic wave and low frequency impact to measure the nonlinearity parameter, which can be used as an indicator of thermal damage, the verification processes for the introduced technique are followed: SEM investigation and permeable pore space test are performed to characterize thermally induced microcracks in concrete, and ultrasonic pulse velocity tests are performed to confirm the outstanding sensitivity of nonlinear ultrasonic modulation technique. In advance, compressive strength of thermal damaged concrete is measured to represent the effect of microcracks on performance degradation. Correlation studies between experimental data and measured data show that nonlinear ultrasonic modulation technique can effectively be used to quantify thermally induced microcracks, and to estimate the compressive strength of thermally damaged concrete.

Parameter Estimation of the Aerated Wetland for the Performance of the Polluted Stream Treatment (오염하천 정화를 위한 호기성 인공습지의 운영인자 평가)

  • Kim, Dul-Sun;Lee, Dong-Keun
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.302-310
    • /
    • 2019
  • A constructed wetland with the aerobic tank and anaerobic/anoxic tank connected in series was employed in order to treat highly polluted stream water. The aerobic tank was maintained aerobic with a continuous supply of air through the natural air draft system. Five pilot plants having different residence times were employed together to obtain parameters for the best performances of the wetland. BOD and COD removals at the aerobic tank followed the first order kinetics. COD removal rate constants were slightly lower than BOD. The temperature dependence of COD (θ = 1.0079) and BOD (θ = 1.0083) was almost the same, but the temperature dependence (θN) of T-N removal was 1.0189. The SS removal rate was as high as 98% and the removal efficiency showed a tendency to increase with increasing hydraulic loading rate (Q/A). The main mechanism of BOD and COD removal at the anaerobic/anoxic tank was entirely different from that of the aerobic tank. BOD and COD were supplied as the carbon source for biological denitrification. T-P was believed to be removed though the cation exchange between orthophosphate and gravels within the anaerobic and anoxic tanks. The wetland could successfully be operated without being blocked by the filtered solid which subsequently decomposed at an extremely fast rate.

Prediction of Silking Date of Corn Hybrids Using Beta Function Model in South Korea (Beta 함수 모형을 이용한 국내 옥수수 품종의 출사기 예측)

  • Shim, Kyo-Moon;Kim, Yong-Seok;Lee, Jin-Seok;Jung, Myung-Pyo;Choi, In-tae;Kim, Hojung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.3
    • /
    • pp.102-109
    • /
    • 2017
  • A temperature-based Beta function model was developed for corn hybrids (Zea mays L.). The beta function based on the hourly temperature was fitted to the phenology data (silking date) obtained for six years from 2008 through 2013 at four survey sites. Using the Beta function model, silking dates for two corn hybrids with the different ecotype ('Danok3', 'Ilmichal') were estimated over two years from 2014 through 2015 at four sites, and then the performance of the model was evaluated based on the data for the same period. The silking dates estimated by the model were predicted earlier than those observed at survey sites. Still, the correlation between estimates and observation was relatively high (r=0.859). The accuracy of the model differed by the survey site and the year, which was likely due to the considerably large standard deviation of the parameter calibrated in this study.

Development of Satellite-based Drought Indices for Assessing Wildfire Risk (산불발생위험 추정을 위한 위성기반 가뭄지수 개발)

  • Park, Sumin;Son, Bokyung;Im, Jungho;Lee, Jaese;Lee, Byungdoo;Kwon, ChunGeun
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1285-1298
    • /
    • 2019
  • Drought is one of the factors that can cause wildfires. Drought is related to not only the occurrence of wildfires but also their frequency, extent and severity. In South Korea, most wildfires occur in dry seasons (i.e. spring and autumn), which are highly correlated to drought events. In this study, we examined the relationship between wildfire occurrence and drought factors, and developed satellite-based new drought indices for assessing wildfire risk over South Korea. Drought factors used in this study were high-resolution downscaled soil moisture, Normalized Different Water Index (NDWI), Normalized Multi-band Drought Index (NMDI), Normalized Different Drought Index (NDDI), Temperature Condition Index (TCI), Precipitation Condition Index (PCI) and Vegetation Condition Index (VCI). Drought indices were then proposed through weighted linear combination and one-class support vector machine (One-class SVM) using the drought factors. We found that most drought factors, in particular, soil moisture, NDWI, and PCI were linked well to wildfire occurrence. The validation results using wildfire cases in 2018 showed that all five linear combinations produced consistently good performance (> 88% in occurrence match). In particular, the combination of soil moisture and NDWI, and the combination of soil moisture, NDWI, and precipitation were found to be appropriate for representing wildfire risk.

Method of Decreasing Cracking Index by Different Mix Conditions for Separated Placement and its Field Application (콘크리트 배합요인별 상·하부 분리타설에 의한 수화열 균열지수 저감방안 및 현장적용)

  • Kim, Min-Ho;Han, Cheon-Goo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.3
    • /
    • pp.292-298
    • /
    • 2016
  • In this research, considering the practical situation of separated placing method for mass concrete structure, an efficient method of controlling the heat of hydration is suggested by comparing between the simulated values and actual measurements conducted with the optimum mix design obtained from the various mix conditions with different types and amount of supplementary cementitious materials(SCMs). As the result of the research, firstly, the optimum mix designs for top and bottom layers were determined by Midas gen as OPC to FA of 85 to 15, and OPC to FA to BS of 50 to 20 to 30, respectively. The concrete mixtures prepared with the mix designs determined from the simulation satisfied the target performance range in slump, air content and compressive strength. Additionally, from temperature measurement for the actual mass concrete placed during spring, the maximum temperature difference between surface and core was about $10^{\circ}C$ with 59 and $49^{\circ}C$ for top and bottom layers, respectively, and 1.4 of cracking index was obtained. Therefore, considering the practical conditions of mass concrete construction, it is considered that the different heat of hydration method using different mix designs with SCMs can be an efficient method for controlling thermal cracking and settling cracking of mass concrete.

An Experimental Study on Fire Safety Performance of Glass Wool Sandwich Panel (그라스울 샌드위치패널의 화재 안전 성능에 대한 실험적 연구)

  • Kweon, Oh-Sang;Yoo, Yong-Ho;Kim, Heung-Youl;Min, Se-Hong
    • Fire Science and Engineering
    • /
    • v.26 no.5
    • /
    • pp.21-27
    • /
    • 2012
  • A real A real scale fire test was performed in accordance with KS F ISO 9705 test method to investigate the combustion characteristics of glass wool sandwich panels. To do this, six kinds of specimens having different density and thickness were examined. The glass sandwich panels were installed inside the room, which had internal dimensions of 2.4 m wide${\times}3.6m$ deep${\times}2.4m$ high. also, combustion characteristic are determined through the exposure of specimens to flame by the propane gas burner has a capacity of 100 kW (10 minutes) and 300 kW (10 minutes) for total 25 minutes of test time. Results of the real sale fire test, it was found that maximum HRR of each specimen was 333.2~365.5 kW, maximum heat flux was 12.4~12.9 kW/$m^2$ And, maximum internal temperature for all specimens was not over $500^{\circ}C$. During the real scale fire test, flash-over didn't occur and the difference by density and thickness of specimen was not found from the results of HRR, heat flux, and internal temperature measurement.

Thermo-chemical Conversion of Poplar Wood (Populus alba × glandulosa) to Monomeric Sugars by Supercritical Water Treatment (초임계수에 의한 현사시나무의 당화 특성)

  • Choi, Joon-Weon;Lim, Hyun-Jin;Han, Kyu-Sung;Choi, Don-Ha
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.44-50
    • /
    • 2006
  • To characterize thermo-chemical feature of su gar conversion of woody biomass poplar wood (Populus alba${\times}$glandulosa ) by sub- and supercritical water was treated for 60s under subcritical (23 MPa, 325 and $350^{\circ}C$) and supercritical (23 MPa, 380, 400, and $425^{\circ}C$) conditions, respectively. Among degradation products undegraded poplar wood solids existed in aqueous products. As the treatment temperature increased, the degradation of poplar wood was enhanced and reached up to 83.1% at $425^{\circ}C$. The monomeric sugars derived from fibers of poplar wood by sub- and supercritical treatment were analyzed by high performance anionic exchange chromatography (HPAEC). Under the subcritical temperature ranges, xylan, main hemicellulose component in poplar wood, was preferentially degraded to xylose, while cellulose degradation started at the transition zone between sub and supercritical conditions and was remarkably accelerated at the supercritical condition. The highest yield of monomeric sugars amounts to ca. 7.3% based on air dried wood weight (MC 10%) at $425^{\circ}C$.