• 제목/요약/키워드: High temperature performance

검색결과 3,913건 처리시간 0.036초

Effect of quartz powder, quartz sand and water curing regimes on mechanical properties of UHPC using response surface modelling

  • Mosaberpanah, Mohammad A.;Eren, Ozgur
    • Advances in concrete construction
    • /
    • 제5권5호
    • /
    • pp.481-492
    • /
    • 2017
  • The aim of this paper is to investigate the effect of quartz powder (Qp), quartz sand (Qs), and different water curing temperature on mechanical properties including 7, 14, 28-day compressive strength and 28-day splitting tensile strength of Ultra High Performance Concrete and also finding the correlation between these variables on mechanical properties of UHPC. The response surface methodology was monitored to show the influences of variables and their interactions on mechanical properties of UHPC, then, mathematical models in terms of coded variables were established by ANOVA. The offered models are valid for the variables between: quartz powder 0 to 20% of cement substitution by cement weight, quartz sand 0 to 50% of aggregate substitution by crushed limestone weight, and water curing temperature 25 to $95^{\circ}C$.

고온을 받은 포스트텐션 콘크리트 보와 슬래브의 구조성능 연구 (A Study on the Structural Performance of Post Tensioned Concrete Beam and Slab Subjected to High Temperature)

  • 최광호;이중원
    • 콘크리트학회논문집
    • /
    • 제29권2호
    • /
    • pp.217-223
    • /
    • 2017
  • 이 연구는 포스트텐션 콘크리트 부재의 화재에 대한 구조성능 평가기술을 개발하기 위하여, 고온에 노출된 포스트텐션 보와 슬래브 부재의 구조특성과 평가기법을 내화 실험을 통하여 연구하였다. 내화 실험 시 가열은 전기로를 사용하였으며 수열온도를 $400^{\circ}C$, $600^{\circ}C$, $800^{\circ}C$로 하였다. 이 연구로부터 고온을 받는 강연선은 응력 이완이 발생되고, 냉각되면서 긴장력의 일부 복원이 나타나는 것을 알 수 있었다. 포스트텐션 보와 슬래브 실험체가 각각 목표온도 도달 후 4시간 경과 시 포스트텐션 부재의 강연선의 잔존 긴장력을 살펴보면, 포스트텐션 보는 $400^{\circ}C$에서는 70%, $600^{\circ}C$에서는 10%, $800^{\circ}C$에서는 2%정도로 볼 수 있으며, 포스트텐션 슬래브는 $400^{\circ}C$에서는 94%, $600^{\circ}C$에서는 84.5%, $800^{\circ}C$에서는 62%정도로 나타났다. 상대적으로 포스트텐션 슬래브의 잔존 긴장력 손실이 작았던 이유는 슬래브가 고온에 일면 노출되었고, 강연선의 강도복원이 일어났기 때문으로 여겨졌다. 이 연구로부터 화재가 발생하는 경우 포스트텐션 부재는 강도 및 긴장력의 손실이 발생하고, 보강 시 손실된 내력만큼의 복원설계가 필요함을 확인하였다.

DEVELOPMENT OF FUEL CELL HYBRID ELECTRIC VEHICLE PERFORMANCE SIMULATOR

  • Park, C.;Oh, K.;Kim, D.;Kim, H.
    • International Journal of Automotive Technology
    • /
    • 제5권4호
    • /
    • pp.287-295
    • /
    • 2004
  • A performance simulator for the fuel cell hybrid electric vehicle (FCHEV) is developed to evaluate the potentials of hybridization for fuel cell electric vehicle. Dynamic models of FCHEV's electric powertrain components such as fuel cell stack, battery, traction motor, DC/DC converter, etc. are obtained by modular approach using MATLAB SIMULINK. In addition, a thermodynamic model of the fuel cell is introduced using bondgraph to investigate the temperature effect on the vehicle performance. It is found from the simulation results that the hybridization of fuel cell electric vehicle (FCEV) provides better hydrogen fuel economy especially in the city driving owing to the braking energy recuperation and relatively high efficiency operation of the fuel cell. It is also found from the thermodynamic simulation of the FCEV that the fuel economy and acceleration performance are affected by the temperature due to the relatively low efficiency and reduced output power of the fuel cell stack at low temperature.

Frictional Characteristics of Stainless Steel Ball Bearings Lubricated with Hot Water

  • Lee, Jae-Seon;Kim, Jong-In;Kim, Ji-Ho;Park, Hong-Yune;Zee, Sung-Qunn
    • KSTLE International Journal
    • /
    • 제4권2호
    • /
    • pp.43-46
    • /
    • 2003
  • Water-lubricated frictional characteristics of a stainless steel ball bearings are not well known compared to the oil-lubricated frictional characteristics. Furthermore a study on friction at a high temperature is rare because the bearing maintenance strategy for water-lubricated or chemicals-lubricated bearings of equipment is generally based on the replacement of the failed bearings-and parts. Ball bearings and ball screw are installed in the power transmission for the newly developing integral reactor and these are lubricated with chemically-controlled pure water at a high temperature and a high pressure. Bearings and power transmitting mechanical elements for an atomic reactor requires high reliability and high performance during the estimated lifetime, and it should be verified. In this paper, experimental research results of the frictional characteristics for water-lubricated ball bearings are presented as a preliminary investigation.

ECC로 피복된 고강도콘크리트 부재의 폭렬억제성능에 관한 연구 (A Study on the Anti-Spalling Performance of High-Strength Concrete Members by covered Engineered Cementitious Composite)

  • 이재영;김재환;한병찬;박선규;권영진
    • 한국화재소방학회논문지
    • /
    • 제22권4호
    • /
    • pp.85-94
    • /
    • 2008
  • 본 연구는 HSC의 폭렬제어 및 내화성능 확보 방안 중 하나인, HSC에 내화성능을 갖는 피복층을 형성하는 방안에 대하여, 피복층을 ECC로 이용하는 경우 이에 대한 화재성상 및 내화특성을 실험적으로 검토하고, 수열온도 예측 등과 같은 내화설계를 위한 기초자료를 제시하기 위한 것이다. 이를 위하여 HSC 부재에 대한 내화시험을 실시하였다. 실험변수는 ECC의 피복층 두께(20, 30, 40 mm), 시공방식(라이닝, 보수)으로 하였으며, 비교 및 검증을 위하여 피복층이 없는 HSC 및 FRCC 2종류의 충전두께의 변화에 따른 실험을 실시하였다. 도입 화재하중은 ISO 834 기준 3시간 가열곡선으로 하였으며, 각 깊이별 수열온도, 폭렬 및 균열성상, 중성화깊이를 측정 평가하였다. 실험결과 ECC는 HSC 보다 높은 차열성능을 가지고 있으며, 폭렬저감성능을 확인 할 수 있었다. 또한 회귀분석을 통하여 ECC를 HSC의 피복층으로 사용하는 경우에 대한 수열온도 간편 예측식을 제시하였으며, 이에 대한 검증을 실험결과를 통해 수행하였고 HSC를 이용한 부재에 대한 본 예측식의 적용 방법을 제시하였다.

데칼 공정을 적용한 고성능 MEA 개발 (Development of High Performance MEA by Decal Method for PEM Fuel Cell)

  • 이기섭;이재승;권낙현;황인철
    • 한국수소및신에너지학회논문집
    • /
    • 제22권5호
    • /
    • pp.585-591
    • /
    • 2011
  • This study has focused on the development of high performance membrane-electrode assemblies (MEAs) fabricated by decal method for proton exchange membrane fuel cell (PEMFC). To study the effect of ionomer contents on performance, we fabricated MEAs with several electrodes which were prepared by varying the quantity of ionomer from 20 wt.% to 45 wt.% in catalyst layer. The MEA performance was obtained through single cell test. The MEA prepared from electrode with 25wt.% of ionomer showed the best performance. We evaluated the surface area and pore volume of electrode with BET. We found that the surface area and pore volume in electrode decreased rapidly at the electrode with 40wt.% of ionomer in catalyst layer. MEA was fabricated by roll laminator machine and the roll laminating conditions for the preparation of MEA, such as laminating press, temperature and speed, were optimized. The MEA performance is not affected by laminating temperature and speed, but roll laminating press have a great effect on MEA performance.

고온 태양열기기용 액체금속 히트파이프의 작동조건에 따른 성능 특성 (Performance Characteristics of a Liquid-Metal Heat Pipe for igh-temperature Solar Thermal Devices Depending on the Operating Conditions)

  • 박철민;이정륜;부준홍;강용혁
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.247-250
    • /
    • 2009
  • Sodium heat pipe for high-temperature solar thermal application was manufactured and tested for transient and steady-state operations. Total length of the heat pipe was 650 mm and the outer diameter was 12.7 mm. Thermal performance was compared experimentally for two different cooling methods of the forced and the natural convection cooling in the heat pipe condenser. During the experiment, the maximum temperature was about 1300K, and different cooling methods were applied to the condenser region to charge the operating temperature. The effective thermal conductivity and the thermal resistance were investigated as a function of heat flux, heat transport length, and operating temperature.

  • PDF

Characteristics Analysis of the Heat Exchange Rate according to Soil Temperature and Grout Material using Numerical Simulation

  • Oh, Jin Hwan;Nam, Yu Jin
    • KIEAE Journal
    • /
    • 제14권2호
    • /
    • pp.29-36
    • /
    • 2014
  • The ground source heat pump (GSHP) system has attracted much of attention, because of its stability of heat production and the high efficiency of the system. Performance of the heat exchanger is dependent on the soil temperature, the ground thermal conductivity, the operation schedule, the pipe placement and the design temperature. However, in spite of the many variables of these systems, there have been few research on the effect of the systems on system performance. In this study, analysis of the heat exchange rate according to soil temperature and grout material was conducted by numerical simulation. Furthermore, the heat distribution around the ground heat exchanger was presented on the different conditions of grout and underground temperature by the simulation.