• 제목/요약/키워드: High temperature hardness

검색결과 987건 처리시간 0.033초

내산화성 Cr-Si-Al합금의 주조상태 및 고온가열 후의 미세조직 특성 (Microstructural Characteristics of Oxidation Resistant Cr-Si-Al alloys in Cast State and after High Temperature Heating)

  • 김정민;김채영;양원철;박준식
    • 한국재료학회지
    • /
    • 제31권3호
    • /
    • pp.156-161
    • /
    • 2021
  • Cr-Si based alloys are not only excellent in corrosion resistance at high temperatures, but also have good wear resistance due to the formation of Cr3Si phase, therefore they are promising as metallic coating materials. Aluminum is often added to Cr-Si alloys to improve the oxidation resistance through which stable alumina surface film is formed. On the other hand, due to the addition of aluminum, various Al-containing phases may be formed and may negatively affect the heat resistance of the Cr-Si-Al alloys, so detailed investigation is required. In this study, two Cr-Si-Al alloys (high-Si & high-Al) were prepared in the form of cast ingots through a vacuum arc melting process and the microstructural changes after high temperature heating process were investigated. In the case of the cast high-Si alloy, a considerable amount of Cr3Si phase was formed, and its hardness was significantly higher than that of the cast high-Al alloy. Also, Al-rich phases (with the high Al/Cr ratio) were not found much compared to the high-Al alloy. Meanwhile, it was observed that the amount of the Al-rich phases reduced by the annealing heat treatment for both alloys. In the case of the high temperature heating at 1,400 ℃, no significant microstructural change was observed in the high Si alloy, but a little more coarse and segregated AlCr phases were found in the high Al alloy compared to the cast state.

Spark Plasma Sintering of Stainless Steel Powders Fabricated by High Energy Ball Milling

  • Chang, Si Young;Oh, Sung-Tag;Suk, Myung-Jin;Hong, Chan Seok
    • 한국분말재료학회지
    • /
    • 제21권2호
    • /
    • pp.97-101
    • /
    • 2014
  • The 304 stainless steel powders were prepared by high energy ball milling and subsequently sintered by spark plasma sintering, and the microstructural characteristics and micro-hardness were investigated. The initial size of the irregular shaped 304 stainless steel powders was approximately 42 ${\mu}m$. After high energy ball milling at 800 rpm for 5h, the powders became spherical with a size of approximately 2 ${\mu}m$, and without formation of reaction compounds. From TEM analysis, it was confirmed that the as-milled powders consisted of the aggregates of the nano-sized particles. As the sintering temperature increased from 1073K to 1573K, the relative density and micro-hardness of sintered sample increased. The sample sintered at 1573K showed the highest relative density of approximately 95% and a micro-hardness of 550 Hv.

당의 종류 및 가열방법에 따른 당침밤 제품의 품질 변화 (The Changes in Quality of Sugars Chestnuts by Sugars and Heating Methods)

  • 홍순갑;황태영
    • 한국식품저장유통학회지
    • /
    • 제4권2호
    • /
    • pp.173-180
    • /
    • 1997
  • The effects of sugars and heating methods on the sugar infilteration, hardness, color and organoleptic characteristics were investigated for quality improvement of sugared chestnuts. Among the tested sugars, isomaltooligosugar was the most effective on the rate of sugar infilteration. High temperature increased the rate of sugar infilteration during sugaring process, but color and flavor were deteriorated at 9$0^{\circ}C$. The most suitable temperature for sugaring process was 7$0^{\circ}C$. The product sugared with fructooligosugar recoreded the highest score in hardness, odor and preference than any other sugars tested and increased the rate of sugar infilteration when mixed with sugar at same amount. The changes of soluble solids in chestnuts boiled with microwave oven were ranged from 18。Brix to 32。Brix, while chestnuts heated in general were from 18。Brix to 28。Brix. Chestnuts boiled with microwave heating were sugared rapidly. The hardness of boiled and sugared chestnuts was lower when treated with microwave than with general heating. Hunter's L and b value of sugared chestnut treated with microwave decreased during processing but a value somewhat increased.

  • PDF

경도를 이용한 소결압축금속분말의 상대밀도 예측 (Prediction of Relative Density by Hardness in Compressed Sintered-Metal Powder)

  • 김진영;박종진
    • 소성∙가공
    • /
    • 제6권6호
    • /
    • pp.508-516
    • /
    • 1997
  • Forging process on sintered powder metals has been applied to produce automotive parts which require a high level of strength. In those parts, the measurement of relative density is very important because a low relative density density causes deterioration of strength. In the present study, an indentation force equation was proposed by which the result obtained from the hardness measurement is used to evaluate the relative density. This equation was applied to the prediction of the relative density in cylindrical specimens which were first sintered and then forged at the room temperature and at an elevated temperature. The experimental results were compared with predictions with and without consideration of the workhardening effect on the powder.

  • PDF

첨가제에 의한 경질 크롬 도금 층의 열처리 후 기계적 특성 향상에 관한 연구 (Study on Improvement of Mechanical Properties after Heat Treatment of Hard Chromium Electrodeposits with Additives)

  • 강수영;이대원
    • 한국표면공학회지
    • /
    • 제47권3호
    • /
    • pp.116-120
    • /
    • 2014
  • The addition of cyclo propane carbonyl (cpc) to chromium electroplating bath resulted in a chromium deposit which had greatly improved mechanical properties compared to conventional chromium deposits in condition of heat treatment at high temperature. The as-deposited layers had a Vicker's hardness of about 1170, which is comparable to that of conventional chromium plating deposits. With annealing, the hardness goes through a maximum of 1650 at $600^{\circ}C$. Generally speaking, the hardness of conventional plating decreases monotonically with heat treatment. X-ray diffraction show that annealing up to above $400^{\circ}C$ causes formation and growth of chromium crystallites and that chromium carbides form at above $500^{\circ}C$ temperature.

Friction Behavior of High Velocity Oxygen Fuel (HVOF) Thermal Spray Coating Layer of Nano WC-Co Powder

  • Cho, T.Y.;Yoon, J.H.;Kim, K.S.;Fang, W.;Joo, Y.K.;Song, K.O.;Youn, S.J.;Hwang, S.Y.;Chun, H.G.
    • 한국표면공학회지
    • /
    • 제40권4호
    • /
    • pp.170-174
    • /
    • 2007
  • High Velocity Oxygen Fuel (HVOF) thermal spray coating of nano size WC-Co powder (nWC-Co) has been studied as one of the most promising candidate for the possible replacement of the traditional hard plating in some area which causes environmental and health problems. nWC-Co powder was coated on Inconel 718 substrates by HVOF technique. The optimal coating process obtained from the best surface properties such as hardness and porosity is the process of oxygen flow rate (FR) 38 FMR, hydrogen FR 57 FMR and feed rate 35 g/min at spray distance 6 inch for both surface temperature $25^{\circ}C\;and\;500^{\circ}C$. In coating process a small portion of hard WC decomposes to less hard $W_2C$, W and C at the temperature higher than its decomposition temperature $1,250^{\circ}C$ resulting in hardness decrease and porosity increase. Friction coefficient increases with increasing coating surface temperature from 0.55-0.64 at $25^{\circ}C$ to 0.65-0.76 at $500^{\circ}C$ due to the increase of adhesion between coating and counter sliding surface. Hardness of nWC-Co is higher or comparable to those of other hard coatings, such as $Al_2O_3,\;Cr,\;Cr_2O_3$ and HVOF Tribaloy 400 (T400). This shows that nWC-Co is recommendable for durability improvement coating on machine components such as high speed spindle.

Development of High Entropy Alloy Film using Magnetron Sputtering

  • Kim, Young Seok;Lim, Ki Seong;Kim, Ki Buem
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.129-129
    • /
    • 2018
  • Hard coating application is effective way of cutting tool for hard-to-machine materials such as Inconel, Ti and composite materials focused on high-tech industries which are widely employed in aerospace, automobile and the medical device industry also Information Technology. In cutting tool for hard-to-machine materials, high hardness is one of necessary condition along with high temperature stability and wear resistance. In recent years, high-entropy alloys (HEAs) which consist of five or more principal elements having an equi-atomic percentage were reported by Yeh. The main features of novel HEAs reveal thermodynamically stable, high strength, corrosion resistance and wear resistance by four characteristic features called high entropy, sluggish diffusion, several-lattice distortion and cocktail effect. It can be possible to significantly extend the field of application such as cutting tool for difficult-to-machine materials in extreme conditions. Base on this understanding, surface coatings using HEAs more recently have been developed with considerable interest due to their useful properties such as high hardness and phase transformation stability of high temperature. In present study, the nanocomposite coating layers with high hardness on WC substrate are investigated using high entropy alloy target made a powder metallurgy. Among the many surface coating methods, reactive magnetron sputtering is considered to be a proper process because of homogeneity of microstructure, improvement of productivity and simplicity of independent control for several critical deposition parameters. The N2 is applied to reactive gas to make nitride system with transition metals which is much harder than only alloy systems. The acceleration voltage from 100W to 300W is controlled by direct current power with various deposition times. The coating layers are systemically investigated by structural identification (XRD), evaluation of microstructure (FE-SEM, TEM) and mechanical properties (Nano-indenter).

  • PDF

말릭산과 수산혼합욕에서 경질양극 산화처리 (Hard Anodizing Treatment in Malic Acid Bath mixed with Oxalic Acid)

  • 정용수;장도연;권식철
    • 한국표면공학회지
    • /
    • 제17권3호
    • /
    • pp.78-86
    • /
    • 1984
  • Hard anodic oxide film was investigated formed on pure aluminium with various temperature (30$^{\circ}-60^{\circ}C$), current densities (1.5-3.0A/$dm^2$) and concentrations(3-15g/l) of oxalic acid in 0.5M malic acid bath. The resulting characteristic of the anodic oxide film obtained were summarized as follows in the view point of physical and mechanical properties in relation with the above process variables. 1. The film thickness increased with oxalic acid concentration and bath temperature, while the reversed phenomena were obtained at a high concentration of oxalic acid and high temperature due to the severe dissolution of the anodic oxide film. 2. The hardness and the abrasion resistance were improved by lowering the addition of oxalic acid and the bath temperature. This feature was directly dependent on the porosity formed on the anodic oxide film. 3. The maximum hardness of anodic oxide film showed Hv 579 in the temperature of 30$^{\circ}C$ with the current density, 2.5A/$dm^2$ in the 0.5M malic acid bath mixed with 5g/l oxalic acid.

  • PDF

레오로지 단조를 위한 전자교반응용 알루미늄 합금의 결정립 제어 (Grain Control of Aluminum Alloys with Electromagnetic Stirring for Rheology Forging)

  • 오세웅;고재홍;김태원;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.350-353
    • /
    • 2005
  • Microstructures according to experimental conditions (pouring temperature, stirring current and stirring time) and hardness according to aging time were investigated for A356 cast aluminum alloy and 7075 wrought aluminum alloy. In pouring temperature control, grains became larger and non-uniform at high temperature, however dendritic shapes were shown at lower temperature. In stirring current control, dendritic grains were not destroyed enough at lower current, however fine grains were agglomerated at higher current. And, in stirring time control, grains were more globular but grew larger and larger with the stirring time increasing.

  • PDF

AIP 코팅법에서 로의 온도가 TiN 코팅에 미치는 영향에 관한 실험적 연구 (Experimental Study on Effect of Furnace Temperature on TiN-Coating by Arc Ion Plating)

  • 김해지;이상욱;전만수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.401-406
    • /
    • 2005
  • In this paper, both effect of TiN-coating and effect of temperature in TiN-coating by arc ion plating on surface characteristics of TiN coated SKH51 steel are investigated by experiments. Hardness, surface roughness, TiN coating thickness and adsorption force are measured in order to evaluate the effects. For evaluation of the experimental data, the two-way ANOVA method is used. It is concluded that the furnace temperature in the rang of $400^{\circ}C\~500^{\circ}C$ in AIP processing has very little influence on the TiN coating of the SKH51 steels.

  • PDF