• Title/Summary/Keyword: High temperature condition

Search Result 3,898, Processing Time 0.031 seconds

Effects of UV light irradiation condition and imidization temperature for the generation of pretilt angle on polyimide surfaces (폴리이미드 표면에서의 프리틸트각 발생에 대한 UV조사 조건과 이미드화온도의 영향)

  • Yu, Mun-Sang;Seo, Dae-Shik;Hwang, Jeoung-Yeon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.61-64
    • /
    • 1998
  • We have investigated the effects of ultraviolet (UV) light irradiation condition and imidization temperature for the generation of pretilt angle in nematic liquid crystal (NLC) on the two kinds of the polyimide (PI) surfaces. High pretilt angle of NLC is generated with oblique p-polarized UV light irradiation of 30$^{\circ}$ on PI surface for 20 min. Also, the high pretilt angle of NLC is generated with oblique p-polarized UV light irradiation of 10-30$^{\circ}$ on PI surface at 20min. The pretilt angle of NLC decreases with increasing the imidization temperature on all rubbed PI surfaces ; the pretilt angle of NLC with oblique p-polarized UV light irradiation of 30$^{\circ}$on PI surface decreases with increasing the imidization temperature. The high pretilt angle of NLC is observed due to high photo-depolymerization reaction by low surface energy at low imidization temperature. We suggest that the pretilt angle of NLC is strongly attributed to the photo-depolymerization reaction with the UV light irradiation condition and imidization temperature.

  • PDF

Characteristics of $CH_4$ Decomposition by Plasma (플라즈마 이용 메탄 분해 특성)

  • Kim, Kwan-Tae;Lee, Dae-Hoon;Cha, Min-Suk;Ryu, Jeong-In;Song, Young-Hoon
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.4
    • /
    • pp.24-32
    • /
    • 2005
  • Various types of plasma source applied in $CH_4$ decomposition process are compared. DBD by pulse and AC power, spark by pulse and AC power, rotating arc and hollow cathode plasma are chosen to be compared. The results show that $CH_4$ conversion per given unit power is relatively high in hollow cathode plasma and rotating arc that induces rather high temperature condition and that is why both thermal dehydration and plasma induced decomposition contribute for the overall process. In case of DBD wherein high temperature electron and low temperature gas molecule coexist, the process shows low conversion rate, for in rather low temperature condition the contribution of thermal dehydration is lowered. Selectivity of $C_2H_6$ and $C_2H_2$ is shown to be a good parameter of the relative contribution of plasma chemistry in the overall process. From the results we concluded that required condition of plasma source for a cost effective and high yield $CH_4$ decomposition is to have characteristics of both thermal plasma and non thermal plasma in which temperature is high above a certain threshold state for thermal dehydration and electron induced collision is maximized in the same breath.

  • PDF

Effect of High Temperature on Grain Characteristics and Quality during the Grain Filling Period

  • Chuloh Cho;Han-yong Jeong;Jinhee Park;Yurim Kim;Myoung-Goo Choi;Changhyun Choi;Chon-Sik Kang;Ki-Chang Jang;Jiyoung Shon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2023.04a
    • /
    • pp.51-51
    • /
    • 2023
  • Global warming has significant effects on the growth and development of wheat and can cause a reduction in grain yield and quality. Grain quality is a major factor determining the end-use quality of flour and a reduction in quality can result economic losses. Therefore, it is necessary to study the physiological characteristic of wheat to understand its response to temperature elevation, which can aid in the development of strategies to mitigate the negative effects of high temperature and sustain wheat production. This study investigated the effects of elevated temperature on grain characteristics and quality during the grain filling period of two Korean bread wheat cultivars Baekkang and Jokyoung. These two bread wheat cultivars were subjected to an increasing temperature conditions regime; T0 (control), T1 (T0+1℃), T2 (T0+2℃) and T3 (T0+3℃). The results showed that high temperature, particularly in T3 condition, caused a significant decrease in the number of grains per spike and grain yield compared to the T0 condition. The physical properties, such as grain weight and hardness, as well as chemical properties, such as starch, protein, gluten content and SDSS, which affect the quality of wheat, were changed by high temperature during the grain filling period. The grain weight and hardness increased, while the grain size not affected by high temperature. On the other hand, amylose content decreased, whereas protein, gluten content and SDSS increased in T3 condition. In this study, high temperature within 3℃ of the optimal growth temperature of wheat, quantity properties decreased while quality-related prosperities increased. To better understand the how this affects the grain's morphology and quality, further molecular and physiological studies are necessary.

  • PDF

A Study on the Heat and Moisture Transport Properties of Vapor-Permeable Waterproof Finished Fabrics for Sports Wear (스포츠웨어용 투습방수직물의 열·수분이동 특성에 관한 연구)

  • Son, Bu Hun;Kim, Jin-A;Kwon, Oh Kyung
    • Fashion & Textile Research Journal
    • /
    • v.2 no.3
    • /
    • pp.220-226
    • /
    • 2000
  • This study was to determine the characteristics of vapor-permeable waterproof finished fabric by the coating method. 4 different kinds of coating fabrics (A : wet, porous, polyurethane, B : dry, no porous, polyurethane, C : shape memory polyurethane and D : dry, porous polyurethane) were used, which were developed recently With this sample, moisture transport rate ($40^{\circ}C$, 45%RH & $40^{\circ}C$, 95%RH), changes of coating side's shape by washing times, water repellency rate, contracted length, qmax, heat conductivity, heat keeping rate, heat keeping rate with cotton, heat keeping rate on humidity temperature and humidity within clothing etc. were checked. And it was done in a climate chamber under $20{\pm}2^{\circ}C$, $65{\pm}5%RH$. The results of this study were as follow; In the moisture vapor transmission of sample B and C increased on high temperature and high humidity while sample A and D decreased, on this condition. Qmax rate had high relation with ground fabric's surface properties and the order was A>C>D>B. Heat conductivity had high relation with thickness and surface properties. Heat keeping rates on sweat condition showed around half percents of heat keeping rates on normal condition, but had no relation with moisture vapor transport rate. Changes of the fabric's properties by washing times were different in accordance with the construction of fabrics and the coating resin. Sample C had tow heat keeping rate on the high temperature and humidity and high heat keeping rate on the low temperature and humidity Moisture transport rate of vapor-permeable waterproof finished fabrics had high relation with the properties of ground fabrics on low humidity condition, but on the high humidity condition, it was highly related with the properties of coating resin.

  • PDF

Change in the Plant Temperature of Tomato by Fogging and Airflow in Plastic Greenhouse (포그분사 및 공기유동에 의한 온실재배 토마토의 엽온 변화)

  • Nam, Sang-Woon;Kim, Young-Shik;Seo, Dong-Uk
    • Journal of Bio-Environment Control
    • /
    • v.23 no.1
    • /
    • pp.11-18
    • /
    • 2014
  • To investigate the influence of surrounding environment on the plant temperature and examine the effect of plant temperature control by fogging and airflow, plant temperature of tomato, inside and outside air temperature and relative humidity, solar radiation and wind speed were measured and analyzed under various experimental conditions in plastic greenhouse with two-fluid fogging systems and air circulation fans. According to the analysis of plant temperature and the change of inside and outside air temperature in each condition, inside air temperature and plant temperature were significantly higher than outside air temperature in the control and shading condition. However, in the fogging condition, inside air temperature was lower or slightly higher than outside air temperature. It showed that plant temperature could be kept with the temperature similar to or lower than inside air temperature in fogging and airflow condition. To derive the relationship between surrounding environmental factor and plant temperature, we did multiple regression analysis. The optimum regression equation for the temperature difference between plant and air included solar radiation, wind speed and vapor pressure deficit and RMS error was $0.8^{\circ}C$. To investigate whether the fogging and airflow contribute to reduce high temperature stress of plant, photosynthetic rate of tomato leaf was measured under the experimental conditions. Photosynthetic rate was the highest when using both fogging and airflow, and then fogging, airflow and lastly the control. So, we could assume that fogging and airflow can make better effect of plant temperature control to reduce high temperature stress of plant which can increase photosynthetic rate. It showed that the temperature difference between plant and air was highly affected by surrounding environment. Also, we could estimate plant temperature by measuring the surrounding environment, and use it for environment control to reduce the high temperature stress of plant. In addition, by using fogging and airflow, we can decrease temperature difference between plant and air, increase photosynthetic rate, and make proper environment for plants. We could conclude that both fogging and airflow are effective to reduce the high temperature stress of plant.

EFFECT OF TEMPERATURE AND HUMIDITY ON THE LEAF COLOR AND CHEMICAL COMPONENTS DURING THE YELLOWING STAGE OF FLUE-CURING (황색종 연초 건조중 황변기 온습도차가 잎담배 색상 및 화학성분에 미치는 영향)

  • Hwang, Keon-Joong;Seok, Yeong-Seon;Lee, Han-Seok
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.7 no.2
    • /
    • pp.129-139
    • /
    • 1985
  • cent was carried out to study on the effect of temperature and humidity to chemical tobacco leaves during the yellowing stage. The results were follows : In the condition of high humidity and low temperature, yellowing time was delayed ; leaf color appeared lack clearness. In the higher temperature and the lower humidity during the yellowing stage : total sugar, reducing sugar and malic acid content were increased. Decomposition of nitrogenous components elevated in $38^{\circ}C$, 85%RH. Changes of total nitrogen content correlated with total curing time. Adecrease of linolenic acid with a corresponding increase of chlorogenic acid proceeded in the condition of low temperature and high humidity. In a view of tobacco quality by chemical components, the low temperature and high humidity during the yellowing stage decreased quality of tobacco leaves. It is considered to control of the proper condition of temperature and humidity during the yellowing.

  • PDF

A Numerical Analysis of the NO Emission Characteristics in $CH_4/Air$ Counterflow Premix Flame (메탄/공기 대향류 예혼합화염의 NO 발생특성에 관한 수치해석)

  • Cho, Eun-Seong;Chung, Suk-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.4
    • /
    • pp.22-27
    • /
    • 2004
  • Lean premix combustion is a best method in low $NO_x$ gas turbine combustor and we must know the characteristics of NO emission in high temperature and pressure condition in premix flame. Numerical analysis was performed to investigate the NO emission characteristics by adopting a counterflow as a model problem using detailed chemical kinetics. Methane $(CH_4)$ was used as a test fuel which is the main fuel of natural gas. The tested parameters were stretch rate, equivalence ratio, initial temperature, and pressure in premix flame. Results showed that NO emission was high in low stretch rate, near stoichiometric equivalence ratio, high initial temperature, and high pressure. Also, the pressure effect was sensitive in high temperature condition.

  • PDF

Thermal Properties and Spray Characteristics of Kerosene Fuel at High Temperature and Pressure (고온고압 환경에서 케로신 연료의 물성치변화 및 분무특성연구)

  • Byeon, Yong-Woo;Son, Min;Koo, Ja-Ye
    • Journal of ILASS-Korea
    • /
    • v.15 no.2
    • /
    • pp.94-99
    • /
    • 2010
  • The object of this investigation is to study the thermal properties and spray characteristics of kerosene fuel in high temperature and pressure conditions. In order to investigate the thermal properties and spray characteristics, KIVA3 and SUPERTRAPP have been used at the same time. The thermal properties of kerosene has been calculated in high temperature and pressure condition using SUPERTRAPP. The study of spray characteristics has been conducted at both original properties of KIVA3 and calculated properties. The evaporation rate was increased in proportion to pressure when the calculated properties were used. However, the effect of pressure was not shown in the case of using original properties. So the calculated properties are more effective than original properties in high temperature and high pressure condition.

The Characteristics of the Strength Development and Chloride Attack Resistance on the Concrete using High Early Strength Cement by Steam Curing Temperature Condition (증기양생 온도조건에 따른 조강시멘트 콘크리트의 강도발현특성 및 내염특성)

  • Lee Woong Jong;Lee Won Am;Um Tae Sun;Lee Jong Ryul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.599-602
    • /
    • 2005
  • In this research, the characteristics of the strength development and chloride attack resistance on the concrete using high early strength cement by steam curing temperature condition were studied. As a result, It is observed that the early strength(16hr) is increasing and the strength of 28 days is decreasing, according as the rising of the steam curing temperature without the kinds of base cement(OPC and high early strength cement). On the other hand, it is observed that the more the contents of the unit binder(base cement + GGBF) is abundant, the more the steam curing temperature can be reduced in case of the high early strength. Also, the chloride attack resistance is improved according as the amount of GGBF is increased with the kinds of base cement(OPC and high early strength cement).

  • PDF

Evaluation of High Temperature Structural Integrity of Intermediate Heat Exchanger in a Steady State Condition for PGSFR (PGSFR중간열교환기의 정상상태 고온 구조 건전성 평가)

  • Lee, Seong-Hyeon;Koo, Gyeong-Hoi;Kim, Sung-Kyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.107-114
    • /
    • 2016
  • Four cylindrically shaped IHXs(Intermediate Heat Exchangers) are installed in the PHTS(Primary Heat Transfer System) of the PGSFR(Prototype Gen IV Sodium cooled Fast Reactor). As for the IHX, the temperature difference of structure is inevitable result caused by heat transfer between primary coolant sodium and IHTS(Intermediate Heat Transport System) sodium. It is necessary to evaluate the high temperature structural integrity of IHXs which operate at the elevated temperature condition over the creep temperature. In this paper, the high temperature structural integrity of IHX under assumed loading conditions has been reviewed according to ASME code.