• 제목/요약/키워드: High temperature carbon composites

검색결과 178건 처리시간 0.028초

필라멘트 와인딩 복합재의 환경노화에 따른 기계적물성 평가 (Behaviors of Mechanical Properties of Filament-Winding-Laminated Composites due to Environmental Aging)

  • 최낙삼;윤영주;이상우;김덕재
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제26회 춘계학술대회논문집
    • /
    • pp.31-35
    • /
    • 2006
  • Degradation characteristics of filament-winded composites due to accelerated environmental aging have been evaluated under high temperature, water immersion and thermal impact conditions. Two kinds of laminated composites coated by an urethane resin have been used: carbon-fiber reinforced epoxy(T700/Epon-826, CFRP) and glass-fiber reinforced phenolic (E-glass/phenolic, GFRP). For tensile strength of $0^{\circ}$ composites, CFRP did high reduction by 25% under the influence of high temperature and water while CFRP showed little degradation. However for water-immersed $90^{\circ}$ composites both CFRP and GFRP showed high reduction in tensile strength. Bending strength and modulus of $90^{\circ}$ composites were largely reduced in water-immersion as well as high temperature environment. Urethane coating on the composite surface improved the bending properties by 20%, however hardly showed such improvement for water-immersed $90^{\circ}$ composites.

  • PDF

Erosion Behavior of SiC Coated C/C Composites with Condition of Combustion Test

  • Joo, Hyeok-Jong;Min, Kyung-Dae;Lee, Jae-Won
    • Carbon letters
    • /
    • 제4권3호
    • /
    • pp.133-139
    • /
    • 2003
  • Carbon/carbon composites are ideal candidates for a number of aerospace applications including structural materials for advanced vehicles, leading edges, structures of re-entry and hypersonic vehicles and propulsion systems. One serious defect for such application of the carbon/carbon composites is their poor oxidation resistance in high temperature oxidizing environments. SiC coating was employed to protect the composites from oxidation. It is mechanically and chemically stable under extreme thermal and oxidative environments, provides good adhesion to the substrate, and offers good thermal shock resistance. The SiC layer on the nozzle machined from the carbon/carbon composites was formed by pack-cementation method. Then, erosion characteristic of SiC coated carbon/carbon nozzle was examined by combustion test using a liquid rocket motor. The erosion rates were measured as function of combustion pressure, ratio of oxygen to fuel, combustion time, density of the composites and geometry of reinforced carbon fibre in the composites. The morphology change of the composites after combustion test was investigated using SEM and erosion mechanism also was discussed.

  • PDF

Formation of Isotropic Carbon Matrix in Carbon/Carbon Composites Derived from Pitch

  • Ahn, Chong-Jin;Park, In-Seo;Joo, Hyeok-Jong
    • Carbon letters
    • /
    • 제11권4호
    • /
    • pp.304-310
    • /
    • 2010
  • To manufacture a carbon/carbon composite the coal tar pitch was used as the matrix precursor and the PAN (polyacrylonitrile)-based carbon fiber was used as the reinforcing material to weave 3-directional preform. For pressure carbonization HIP equipment was used to produce a maximum temperature of $1000^{\circ}C$ and a maximum pressure of 100 MPa. The carbonization was induced by altering the dwell temperature between $250^{\circ}C$ and $420^{\circ}C$, which is an ideal temperature for the moderate growth of the mesophase nucleus that forms within the molten pitch during the pressure carbonization process. The application of high pressure during the carbonization process inhibits the mesophase growth and leads to the formation of spherical carbon particles that are approximately 30 nm in size. Most particles were spherical, but some particles were irregularly shaped. The spread of the carbon particles was larger on the surface of the carbon fiber than in the interior of the matrix pocket.

Hafnium Carbide Protective Layer Coatings on Carbon/Carbon Composites Deposited with a Vacuum Plasma Spray Coating Method

  • 유희일;김호석;홍봉근;신의섭;문세연
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.237.2-237.2
    • /
    • 2016
  • A pure hafnium-carbide (HfC) coating layer was deposited onto carbon/carbon (C.C) composites using a vacuum plasma spray system. By adopting a SiC buffer layer, we successfully integrated C.C composites with a $100-{\mu}m-thick$ protective coating layer of HfC. Compared to the conventional chemical vapor deposition process, the HfC coating process by VPS showed increased growth rate, thickness, and hardness. The growth behavior and morphology of HfC coatings were investigated by FE-SEM, EDX, and XRD. From these results, it was shown that the addition of a SiC intermediate layer provided optimal surface conditions during the VPS procedure to enhance adhesion between C.C and HfC (without delamination). The thermal ablation test results shows that the HfC coating layer perfectly protected inner C.C layer from thermal ablation and oxidation. Consequently, we expect that this ultra-high temperature ceramic coating method, and the subsequent microstructure that it creates, can be widely applied to improve the thermal shock and oxidation resistance of materials under ultra-high temperature environments.

  • PDF

분쇄형 탄소 섬유/나일론 복합재료의 전기적 성질과 전자파 차폐 효율 (Electrical Properties and Electromagnetic Shielding Effectiveness of Milled Carbon Fiber/Nylon Composites)

  • 김창제;최형도;서광석;윤호규
    • 폴리머
    • /
    • 제27권3호
    • /
    • pp.201-209
    • /
    • 2003
  • 나일론의 종류에 따른 분쇄형 탄소 섬유/나일론 복합재료의 직류 및 교류 전도도, 그리고 전자기파 차폐 효율을 조사하였다. 탄소 섬유의 함량이 약 7 vol%에서 전도도가 급격하게 증가하는 percolation 전이가 관찰되었다. 나일론 46을 기저 수지로 하였을 경우 더욱 높은 전기 전도도를 나타냈으며, 계면 결합제의 적용 여부에 따라 전도도의 차이가 발생하였다. 온도증가에 따라 전도도가 증가하는 negative temperature coefficient 현상을 나타냈으며, percolation 전후의 탄소 섬유 함량에서의 주파수에 따른 전도기구를 완화와 공진 현상으로 각각 달리 설명할 수 있었다. 회로망 분석기를 통하여 측정한 전자기파 차폐 효율은 전도도 및 탄소 섬유의 함량에 따라 증가하였으며, 높은 전도도 영역에서의 전자기파 차폐 효율은 반사에 의한 차폐가 지배적이었다.

필라멘트 와인딩 복합적층재의 환경가속 노화시험 평가 (Degradation Characteristics of Filament-Winding-Laminated Composites Under Accelerated Environmental Test)

  • 김덕재;윤영주;최낙삼
    • 대한기계학회논문집A
    • /
    • 제31권3호
    • /
    • pp.295-303
    • /
    • 2007
  • Degradation behaviors of filament-winded composites have been evaluated under the accelerated environmental test of high temperature, water immersion and thermal impact conditions. Two kinds of laminated composites coated by an urethane resin have been used: carbon-fiber reinforced epoxy(T700/Epon-826, CFRP) and glass-fiber reinforced phenolic (E-glass/phenolic, GFRP). For tensile strength of $0^{\circ}$ composites, CFRP showed little degradation while GFRP did high reduction by 25% under the influence of high temperature and water However for water-immersed $90^{\circ}$ composites tensile strength of both CFRP and GFRP showed high reduction. Bending strength and modulus of $90^{\circ}$ composites were largely reduced in water-immersion as well as high temperature environment. Urethane coating on the composite surface improved the bending properties by 20%, however hardly showed such improvement for water-immersed $90^{\circ}$ composites. In case of shear strength and modulus, both CFRP and GFRP showed high reduction by water-Immersion test but did a slight increase by high temperature and thermal impact conditions.

시아네이트 에스터 수지의 화학유변학적 거동 및 탄소섬유강화 고분자 복합재료의 물성 (Chemorheological Behavior of Cyanate Ester Resin and Properties of Carbon Fiber Reinforced Polymer Composites)

  • 나효열;윤병철;김승환;이성재
    • Elastomers and Composites
    • /
    • 제48권2호
    • /
    • pp.133-140
    • /
    • 2013
  • 탄소섬유강화 고분자(CFRP) 복합재료는 고분자 매트릭스 내에 탄소섬유를 강화제로 사용한 복합재료이다. 최근 고온 및 고진공 조건이 요구되는 항공우주 및 전자산업용 고성능 재료로 사용하기 위해 높은 열안정성과 낮은 기체방출 특성을 갖는 CFRP 복합재료가 활용되고 있다. 이러한 용도에 시아네이트 에스터 수지는 가장 적합한 매트릭스 수지로 꼽히고 있다. 본 연구에서는 시아네이트 에스터 수지와 촉매의 조합, 경화 거동 및 경화 사이클을 최적화하기 위해 화학유변학적 거동을 분석하였다. 최적 조건은 촉매 100 ppm을 첨가한 수지 조성물을 $150^{\circ}C$에서 경화한 경우로 나타났다. 열안정성과 기체방출 특성을 분석한 결과 경화된 수지 조성물은 열분해 온도 $385^{\circ}C$ 및 전체질량손실 0.29%를 나타내었다. 설정한 수지 조성 및 경화 조건을 사용하여 CFRP 프리프레그 및 이를 적층한 복합재료를 제조하였다. 복합재료의 인장 탄성률을 이론적 모델과 비교한 결과 매우 일관성이 있었다.

고압 자전연소 소결법을 이용한 섬유강화 복합체의 제조 (Fabrication of Fiber-Reinforced Composites by High Pressure Self-Combustion Sintering Method)

  • 방환철;고철호;임동원;김봉섭;최태현;윤존도
    • 한국세라믹학회지
    • /
    • 제37권5호
    • /
    • pp.444-452
    • /
    • 2000
  • Dense composites of titanium matrix and Al2O3 matrix with reinforcements of carbon or titanium carbide fibers were successfully fabricated by high-pressure self-combustion sintering method or combustion reacton under 30 MPa of uniaxial pressure with an aid of external heating in vaccum. It was found that the fibers were uniformly distributed in the matrix, and aligned in a phase perpendicular to the pressure axis. As a moel ratio of Ti/C or reaction time increased, the density of Ti-matrix composite increased Micro pores around fibers could be removed by using clean carbon fibers without sizing agent on their surface. The evolution of carbide fibers from carbon fibers was observed. The composition of the various phases around fibers were analyzed.

  • PDF

Polymer matrices for carbon fiber-reinforced polymer composites

  • Jin, Fan-Long;Lee, Seul-Yi;Park, Soo-Jin
    • Carbon letters
    • /
    • 제14권2호
    • /
    • pp.76-88
    • /
    • 2013
  • Carbon fibers (CFs) have high service temperature, strength, and stiffness, and low weight. They are widely used as reinforcing materials in advanced polymer composites. The role of the polymer matrix in the composites is to provide bulk to the composite laminate and transfer load between the fibers. The interface between the CF and the resin matrix plays a critical role in controlling the overall properties of the composites. This paper aims to review the synthesis, properties, and applications of polymer matrices, such as thermosetting and thermoplastic resins.

보수.보강에 사용하는 무기계 폴리머 복합재료의 내열성능 (Fire Resistance of Inorganic Polymer Composites for Repair and Rehabilitation)

  • ;정란
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.647-652
    • /
    • 1997
  • Repair and rehabilitation of existing structures is becoming a major part of construction, both in the industrially developed and developing countries. Advanced high strength composites are being utilized more and more for these applications because they are much stronger than steel, non-corrosive, and light. The light weight reduces the construction cost and time sustantially. The fibers are normally made of aramid, carbon, or glass and the binders are typically epoxies or esters. One major disadvantage of these composites is the vulnerability to fire. In most instance, the temperature cannot exceed $300^{\cire}C$. Since carbon and glass can substain high temperatures, an inorganic polymer is being evaluated for use as a matrix. The matrix can sustain more than $1000^{\cire}C$. The results reported in this paper deal with the mechanical properties of carbon composites made with the inorganic polymer and the behavior strengthened reinforced concrete beams. The results indicate that the new matrix can be successfully utilized for a number of applications.

  • PDF