• 제목/요약/키워드: High temperature air

검색결과 3,195건 처리시간 0.03초

고온의 예열공기를 이용한 액체연료 분무특성에 관한 실험적 연구 (Experimental Study on Light Oil Combustion Characteristics With High-Preheated Air)

  • 박민철;오상헌
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2001년도 제23회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.42-50
    • /
    • 2001
  • An experimental study has been carried on high-preheated temperature air combustion. Because the flames with high-preheated temperature air combustion were much more stable and homogeneous(both temporally and spatially) as compared to the room-temperature combustion air. The global flame feature showed range of flame colors (yellow, blue, blurish-green) over the range of conditions. Low level of NOx along with low level of CO have been obtained under high-preheated air combustion conditions. The thermal and chemical behavior of high-preheated air combustion flames depends on preheated temperature and oxygen concentration air.

  • PDF

가스터빈 연소기내의 고온공기 분무연소 해석 (Spray combustion with high temperature air in a Gas Turbine Combustor)

  • 조상필;김호영;박심수
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제28회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.192-198
    • /
    • 2004
  • A numerical study was conducted to determine the effects of high temperature air, including equivalent ratio on flow field, temperature, evaporation, and overall temperature distribution in gas turbine combustor. A sector model of a typical wall jet can combustor, featuring introduction of primary air and dilution air via wall jet, was used in calculations. Flow field and temperature distribution were analyzed. Operating conditions such as inlet temperature and overall equivalent ratio were varied from 373 to 1300 K, and from 0.3 to 0.6, respectively, while any other operating conditions were fixed. The RNG ${\kappa}-{\varepsilon}$ model and eddy breakup model were used for turbulence and combustion model respectively. It was found that the increase with the inlet air temperature, velocity in the combustor is accelerated and evaporation of liquid fuel is not affected in primary zone, high temperature inlet air enhances the evaporation and improves overall temperature distribution factor.

  • PDF

고온공기를 이용한 제트확산화염의 연소특성에 관한 실험 (Experiment on the Characteristics of Jet Diffusion Flames with High Temperature Air Combustion)

  • 조은성;대야건;소림수소;정석호
    • 대한기계학회논문집B
    • /
    • 제28권3호
    • /
    • pp.359-364
    • /
    • 2004
  • For the development of high efficiency and low emission combustion systems, high temperature air combustion technology has been tested by utilizing preheated air over 1100 K and exhaust gas recirculation. In this system, combustion air is diluted with large amount of recirculated exhaust gases, such that the oxygen concentration is relatively low in the reaction zone, leading to low flame temperature. Since, the temperature fluctuations and sound emissions from the flame are small and flame luminosity is low, the combustion mode is expected to be flameless or mild combustion. Experiment was performed to investigate the turbulent flame structure and NO$_x$ emission characteristics in the high temperature air combustion focused on coflowing jet diffusion flames which has a fundamental structure of many practical combustion systems. The effect of turbulence has also been evaluated by installing perforated plate in the oxidizer inlet nozzle. LPG was used as a fuel. Results showed that even though NO$_x$ emission is sensitive to the combustion air temperature, the present high temperature air combustion system produce low NO$_x$ emission because it is operated in low oxygen concentration condition by the high exhaust gas recirculation.

제트확산염의 고온공기연소특성에 관한 실험적 연구 (An Experimental Study of the Characteristics with High Temperature Air Combustion in Jet Diffusion Flames)

  • 조은성;대야건;소림수소;정석호
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.89-94
    • /
    • 2003
  • For the development of high efficiency and low emission combustion systems, high temperature air combustion technology has been tested by utilizing preheated air over 1100 K and exhaust gas recirculation. In this system, combustion air is diluted with large amount of exhaust gases ($N_2$, $CO_2$), such that the oxygen concentration is relatively low in the reaction zone, leading to low flame temperature. Since, the temperature fluctuations and sound emissions form the flame are small and flame luminosity is low, the combustion mode is expected to be flameless or mild combustion. Experiment was performed to investigate the turbulent flame structure and $NO_X$ emission characteristics in the high temperature air combustion focused on coflowing jet diffusion flames which has a fundamental structure of many practical combustion systems. The effect of turbulence has also been evaluated by installing perforated plate in the oxidizer inlet nozzle. LPG was used as a fuel. Results showed that even though $NO_X$ emission is sensitive to the combustion air temperature, the present high temperature air combustion system produce low $NO_X$ emission because it is operated in low oxygen concentration condition in excess of dilution.

  • PDF

대향류 확산화염의 고온공기 연소특성에 관한 수치해석 (A Numerical Analysis of the Characteristics with High Temperature Air Combustion in Counterflow Diffusion Flame)

  • 조은성;히데아키 코바야시;정석호
    • 한국연소학회지
    • /
    • 제8권4호
    • /
    • pp.9-14
    • /
    • 2003
  • High temperature air combustion technology has been utilized by using preheated air over 1100 K and excessive exhaust gas recirculation. Numerical analysis was performed to investigate the combustion characteristics with high temperature deficient oxygen air combustion by adopting a counterflow as a model problem accounting for detailed chemical kinetics. Methane($CH_4$) was used as a test fuel and calculated oxidizer conditions were low temperature high oxygen (300K, $X_{O2}=0.21$) and high temperature low oxygen (1300K, $X_{O2}=0.04$) conditions. The latter case showed that the flame temperature is lower than the former case and its profile showed monotonic decrease from oxidizer to fuel side, without having local maximum flame temperature at high stretch rate. Also, heat release rate was one order lower and it has one peak profile because of low oxygen concentration and heat release rate integral is almost same for stretch rate. High temperature low oxygen air combustion shows low NO emission characteristics.

  • PDF

농업용 비닐하우스의 온풍난방에 관한 기초적 연구 (Study on the Vinyl House Heating by Warm Air)

  • 조진구;이근후
    • 한국농공학회지
    • /
    • 제19권3호
    • /
    • pp.4483-4491
    • /
    • 1977
  • The results obtained are as follows; 1. The variation of the temperature in a vinyl house without heating system is similar to that of air temperature in a day. The difference of maximum temperature and minimum one in a day is 27$^{\circ}C$ which is two times greater than the daily difference of air temperature. 2. When the length of the duct is increased, the high temperature zone is built up in the direction of warm air discharge from the duct, and the low temperature zone is built up in the opposite direction of warm air discharge. But, in case of the duct length is short (0.05 L), the temperature distrubution in a vinyl house become uniform. It is concluded that the shorter length of the duct, the better the distribution of the temperature in a vinyl house is. 3. When the duct is installed at high position, the high temperature zone is built up in the upper zone of the vinyl house and the low temperature zone is built up in the lower zone. And when the position of the duct is low, the rate of temperature variation along the vertical direction become high, and the direct contact of warm air with the plant in the house is occured. It is concluded that the duct should be installed at the position of slightly higher than the plant height. 4. When the fuel consumption rate is fixed at the 101/hr, the lowest temperature warming rate in the vinyl house is 5$^{\circ}C$ without regard to the air temperature.

  • PDF

고온의 예열공기를 이용한 액체연료의 분무 연소특성에 관한 실험적 연구 (Experimental Study on Light Oil Combustion Characteristics With High-Preheated Air)

  • 박민철;김동일;오상헌
    • 한국연소학회지
    • /
    • 제7권3호
    • /
    • pp.1-8
    • /
    • 2002
  • An experimental study has been carried on high-preheated temperature air combustion. The flames with high-preheated temperature air combustion turned out to be both temporally and spatially much more stable and homogeneous than these with room-temperature combustion air. The global flame feature showed a range of flame colors (yellow, blue, blurish-green) according to the flame conditions. A low level of NOx along with low level of CO has been obtained under high-preheated air combustion conditions. The thermal and chemical behavior of high-preheated air combustion flames depends on the preheated temperature and the oxygen concentration of air.

  • PDF

지상 고밀도 관측 시스템을 이용한 대구의 여름철 고온현상 조사 (Investigation of Urban High Temperature Phenomenon in Summer using the High Density Ground Monitoring System in Daegu Metropolitan Area)

  • 김상헌;조창범;김해동
    • 한국환경과학회지
    • /
    • 제23권9호
    • /
    • pp.1619-1626
    • /
    • 2014
  • We analyzed diurnal variations in the surface air temperature using the high density urban climate observation network in Daegu metropolitan city, the representative basin-type city in Korea, in summer, 2013. We used a total of 28 air temperature observation points data(16 thermometers and 12 AWSs). From the distribution of monthly average air temperature, air temperature at the center of Daegu was higher than the suburbs. Also, the days of daily minimum air temperature more than or equal to $25^{\circ}C$ and daily maximum air temperature more than or equal to $35^{\circ}C$ at the schools near the center of Daegu was more than those at other schools. This tendency appeared more clearly on the days of daily minimum air temperature more than or equal to $25^{\circ}C$. Also, the air temperature near the center of the city was higher than that of the suburbs in the early morning. Thus it was indicated that the air temperature was hard to decrease as the bottom of the basin. From these results, the influence of urbanization to the formation of the daily minimum temperature in Daegu was indicated.

고속 스핀들용 공기 베어링의 열 특성에 관한 연구 (A Study on Thermal Characteristics of Air Bearing System for High-Speed Spindle)

  • 이득우;이종렬;김보언;안지훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.1021-1026
    • /
    • 2000
  • The thermal characteristics of high-speed air spindle system with built-in motor are studied. Experiment and finite element method analysis obtain temperature rise and temperature distribution of housing. For the analysis three-dimensional model is built and temperature rise and distribution in thermal steady state are computed for each rotational frequency. Generally. It is said that the heat generation of air bearing is negligible. But it is certain that the heat generation of air bearing can not be negligible especially in high-speed conditions Frequency response test for air spindle system is executed. In case that the heat generation of air spindle system is high, natural frequency of the system becomes lower when it reaches thermal steady-state and it means that the stiffness of air hearing becomes smaller due to the change of bearing clearance. It is shown that the temperature rise of all spindle system causes thermal expansion md induces the variation of hearing clearance. In consequence the st illness of air bearing becomes smaller.

  • PDF

축열식 고온공기 연소시스템에 대한 실험적 연구 (Experimental Study on High Temperature Air Regenerative Combustion System)

  • 양병옥;임인권
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1999년도 제19회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.189-200
    • /
    • 1999
  • Combustion characteristics of a regenerative combustor for high temperature air combustion have experimentally studied. Temperature measurement on regenerative ceramic material and combustor has been carried out with changing equivalence ratio at constant turn-over period. Stable and unstable combustion region have been found and also detailed averaged temperature profile with respect to various air flow conditions have been obtained.

  • PDF