• Title/Summary/Keyword: High strength steel plate

Search Result 327, Processing Time 0.025 seconds

Strengthening of steel-concrete composite beams with composite slab

  • Subhani, Mahbube;Kabir, Muhammad Ikramul;Al-Amer, Riyadh
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.91-105
    • /
    • 2020
  • Steel-concrete composite beam with profiled steel sheet has gained its popularity in the last two decades. Due to the ageing of these structures, retrofitting in terms of flexural strength is necessary to ensure that the aged structures can carry the increased traffic load throughout their design life. The steel ribs, which presented in the profiled steel deck, limit the use of shear connectors. This leads to a poor degree of composite action between the concrete slab and steel beam compared to the solid slab situation. As a result, the shear connectors that connects the slab and beam will be subjected to higher shear stress which may also require strengthening to increase the load carrying capacity of an existing composite structure. While most of the available studies focus on the strengthening of longitudinal shear and flexural strength separately, the present work investigates the effect of both flexural and longitudinal shear strengthening of steel-concrete composite beam with composite slab in terms of failure modes, ultimate load carrying capacity, ductility, end-slip, strain profile and interface differential strain. The flexural strengthening was conducted using carbon fibre reinforced polymer (CFRP) or steel plate on the soffit of the steel I-beam, while longitudinal shear capacity was enhanced using post-installed high strength bolts. Moreover, a combination of both the longitudinal shear and flexural strengthening techniques was also implemented (hybrid strengthening). It is concluded that hybrid strengthening improved the ultimate load carrying capacity and reduce slip and interface differential strain that lead to improved composite action. However, hybrid strengthening resulted in brittle failure mode that decreased ductility of the beam.

A Study on Reinforced Concrete Beams with Perforation (철근콘크리트 유공보에 관한 연구)

  • Park, Kyong-Ho
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.7-14
    • /
    • 2001
  • In building structure, the story height can be minimized by providing openings in beams which serves for the utility equipments passing through. The dead space in false ceiling thus put to economical use in the form of a substantial reduction in materials and construction cost. In the case of steel structure, there is no critical risk in the structural strength because of reinforcing methods of stiffness and steel plate but in the case of reinforced concrete structure, proper provision should be made in designing these openings, otherwise there is a risk that these opening will possibly weaken the structural strength of the building frame to a critical degree. In this paper, for the numerical analysis of the reinforced concrete beams with circular opening in the web, expecting stress concentration of the circular opening, reinforcing methods were studied. Twenty test pieces with each different reinforcing methods were tested and their resisting forces were defined. From the numerical analysis and test results, the followings were founded;(1)high shear stress distributed around the openings reduce the shearing strength, (2)from the numerical analysis, the maximum tensile stress occurred at opening nodes 1,7, these phenomena were agreed with the test results, (3)reinforcing method around openings have to carried out for stopping diagonal cracks, and (4)both, by steel plate, and wire mesh, are effective reinforcing methods.

  • PDF

Impact response of a novel flat steel-concrete-corrugated steel panel

  • Lu, Jingyi;Wang, Yonghui;Zhai, Ximei;Zhou, Hongyuan
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.277-288
    • /
    • 2022
  • A novel flat steel plate-concrete-corrugated steel plate (FS-C-CS) sandwich panel was proposed for resisting impact load. The failure mode, impact force and displacement response of the FS-C-CS panel under impact loading were studied via drop-weight impact tests. The combined global flexure and local indentation deformation mode of the FS-C-CS panel was observed, and three stages of impact process were identified. Moreover, the effects of corrugated plate height and steel plate thickness on the impact responses of the FS-C-CS panels were quantitatively analysed, and the impact resistant performance of the FS-C-CS panel was found to be generally improved on increasing corrugated plate height and thickness in terms of smaller deformation as well as larger impact force and post-peak mean force. The Finite Element (FE) model of the FS-C-CS panel under impact loading was established to predict its dynamic response and further reveal its failure mode and impact energy dissipation mechanism. The numerical results indicated that the concrete core and corrugated steel plate dissipated the majority of impact energy. In addition, employing end plates and high strength bolts as shear connectors could prevent the slip between steel plates and concrete core and assure the full composite action of the FS-C-CS panel.

An Experimental Study on the Bond Split Mechanism of High Strength Concrete (고강도 콘크리트의 부착할렬기구에 관한 실험적 연구)

  • 장일영
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.129-136
    • /
    • 1999
  • For the prediction of concrete-steel bond ability in reinforced concrete, many countries establish specifications for the pullout test. But these methods hardly to consider many parameters such as strength, shape, diameter and location of steel, concrete restrict condition by loading plate, strength of concrete and cover depth etc, and it is difficult to solve concentration and disturbance of stress. The purpose of this study is to propose a New Ring Test method which can be rational quantity evaluations of bond splitting mechanism. For this purpose, pullout test was carried out to assess the effect of several variables on bond splitting properties between reinforcing bar and concrete. Key variables are concrete compressive strength, concrete cover, bar diameter and rib spacing. Failure mode was examined and maximum bond stress-slip relationships were presented to show the effect of above variables. As the result, it appropriately expressed general characteristics of bond splitting mechanism, and it proved capability for standard test method.

Test and Analysis on the Transverse Gusset Plate Connection to Circular Hollow Section(CHS) of High Strength (고강도 원형강관의 직각방향 거셋플레이트 접합부 실험 및 해석)

  • Lee, Swoo-Heon;Shin, Kyung-Jae;Lee, Hee-Du;Kim, Woo-Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.163-173
    • /
    • 2012
  • A connection composed of a circular hollow structural section (HSS) has complicated details, and exhibits a very complex local deformation when it reaches the yield stress. Given these circumstances, proposing a simple design equation considering local deformation is difficult. The design equations of the Korea Building Code (KBC 2009) for HSS joints are simple and are very similar to those of the AISC. These design equations limit the maximum yield stress up to 360MPa and yield ratio (yield strength/tensile strength) up to 0.8. This means that the material with yield strength exceeding 360MPa could be used after verification based on the test or rational analysis for the similar connection. This paper introduces an experimental program and finite element analysis (FEA) for the circular hollow section (CHS) with a transverse gusset plate made of high-strength steel (HSB600) or structural steel (SS400) when the joints are subjected to lateral force. Comparison of the design equations with the results of FEA and test may be used for the modification of the design equations.

Characteristics of Mechanical Properties at Elevated Temperatures and Residual Stresses in Welded joint of SM570-TMC Steel (SM570-TMC 강의 고온 시 기계적 성질 및 용접접합부의 잔류응력 특징)

  • Lee, Chin Hyunng;Chang, Kyong Ho;Park, Hyun Chan;Lee, Jin Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.3
    • /
    • pp.395-403
    • /
    • 2006
  • Recently constructed bridges often have long spans and simple structure details considering not only the function but other important factors such as aesthetics, maintenance, construction duration and life cycle cost. Therefore, bridges require high-performance steels like extra-thick plate steels and thermo-mechanical control process (TMCP) steels. TMCP stels are now gaining wide attention due to their weldability improved strength and toughness. Recently, SM570-TMC steel, which is a high-strength TMCP steel with a tensile strength of 600 MPa, has been developed and applied to steel structures. However, using this steel in building steel structures requires the elucidation of not only material characteristics but also the mechanical characteristic of welded joints. In this study, high-temperature tensile properties of SM570-TMC steel were investigated through the elevated temperature welded joints of SM570-TMC steel were studied through the three-dimensional thermal elasticplastic analyses on the basis of mechanical properties at high temperatures obtained from the experiment.

Adhesion between Rubber Compound and Copper-Film-Coated Steel Plate Prepared by Vacuum Sputtering and Substitution Plating Methods (진공증착법과 치환도금법으로 제조한 구리박막 피복철판과 배합고무의 접착)

  • Moon, Kyung-Ho;Han, Min-Hyun;Seo, Gon
    • Journal of Adhesion and Interface
    • /
    • v.4 no.3
    • /
    • pp.1-8
    • /
    • 2003
  • Adhesion between rubber compound and copper-film-coated steel plate (abbreviated hereafter as copper film plate) with different thicknesses of copper film was investigated. Two different methods were employed for the preparation of the copper film plates: a substitution plating of preelectroplated zinc with copper ion and a vacuum sputtering of copper on steel plate. Adhesion strength of the copper film plates with rubber compounds was largely dependent upon the thickness of copper film, regardless of their preparation methods. The copper film plates with thinner thickness than 75 nm showed high adhesion comparable to brass, while those with thicker copper film showed poor adhesion due to excessive growth of copper sulfide at adhesion interface.

  • PDF

Numerical Study on the Strength Safety of High Pressure Gas Cylinder (고압가스 압력용기의 강도안전성에 관한 수치해석적 연구)

  • Kim, Chung-Kyun;Kim, Seung-Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.2
    • /
    • pp.1-6
    • /
    • 2010
  • The strength safety of high pressure gas cylinder has been analyzed by using a finite element method. In this study, the internal gas pressures of a steel bombe include a service charging pressure of $9kg/cm^2$, high limit charging pressure of $18.6kg/cm^2$, high limit of safety valve operation pressure $24.5kg/cm^2$, and hydraulic testing pressure of $34.5kg/cm^2$. The computed FEM results indicate that the strength safety for a service charging pressure of $9kg/cm^2$ and high limit charging pressure of $18.6kg/cm^2$ is safe because the stress of a gas cylinder is within yield strength of steel. But the stress for a hydraulic testing pressure of $34.5kg/cm^2$ sufficiently exceeds the yield strength and remains under the tensile strength. If the hydraulic testing pressures frequently apply to the gas cylinder, the bombe may be fractured because a fatigue residual stress is accumulated on the lower round end plate due to a plastic deformation. The computed results show that the concentrated force in which is applied on a skirt zone does not affect to the lower round end plate, and the most weak zone of a bombe is a middle part of a lower round end plate between a bombe body and a skirt for a gas pressure. Thus, the FEM results show that the profile of a lower round end plate is an important design parameter of a high pressure gas cylinder.

A Study on the Ultimate Strength of a Ship's Plate accompanied Secondary Buckling in used Arc-Length Method (호장증분법을 이용한 2차좌굴을 동반한 선체판의 최종강도에 관한 연구)

  • 고재용;박주신;주종길
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.05a
    • /
    • pp.159-165
    • /
    • 2003
  • To Recently, the buckling is easy to happen a thin plate and High Tensile Steel is used at the structure so that it is wide. Especially, the buckling is becoming important design criteria in the ship structure to use especially the High Tensile Steel. Consequently, it is important that we grasp the conduct after the buckling behaviour accurately at the stability of the body of ship structure. In this study, examined closely about conduct and secondary buckling after initial buckling of thin plate structure which receive compressive load according to various kinds aspect ratio under simply supported condition that make by buckling formula in each payment in advance nile to place which is representative construction of hull. Analysis method is F.E.M by ANSYS and complicated nonlinear behaviour to analyze such as secondary buckling.

  • PDF

A Study on the Ultimate Strength of a Ship's Plate in used Arc-Length Method (호장증분법을 이용한 선체판의 최종강도에 관한 연구)

  • 고재용;박주신
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.496-503
    • /
    • 2003
  • Recently, the buckling is easy to happen a thin plate and High Tensile Steel is used at the structure so that it is wide. Especially, the buckling is becoming important design criteria in the ship structure to use especially the High Tensile Steel. Consequently, it is important that we grasp the conduct after the buckling behaviour accurately at the stability of the body of ship structure. In this study, examined closely about conduct and secondary buckling after initial buckling of thin plate structure which receive compressive load according to various kinds aspect ratio under simply supported condition that make by buckling formula in each payment in advance rule to place which is representative construction of hull. Analysis method is F.E.M by ANSYS and complicated nonlinear behaviour to analyze such as secondary buckling.

  • PDF