• Title/Summary/Keyword: High speed steel

Search Result 790, Processing Time 0.022 seconds

The Manufacturing Technology of TTX Composite Train Carbody Using a Autoclave Molding Process (오토클레이브 성형기법에 의한 TTX 복합재 차체 제작 기술)

  • Shin, Kwang-Bok;Ryu, Bong-Jo;Lee, Sang-Jin;Jung, Jong-Cheol;Cho, Se-Hyun;Kim, Jung-Seok
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.207-211
    • /
    • 2005
  • The Korean Tilting Train eXpress (TTX) with service speed of 180km/h have been developing using hybrid design concept combined with a sandwich composite structure for the carbody and stainless steel structure for the underframe to match the challenging demands with respect to cost efficient lightweight design for railway carriage structures. The sandwich composite structure was used to minimize the weight of the carbody, while the metal underframe was used to modify the design easily and to keep the strength of underframe for the installation of the electrical equipments. The sandwich composite structure was 23 meters long, 3 meters wide and 2.7 meters high, and cured as one body in a large autoclave equipment with the length of 30 meters and the diameter of 5 meters. The joint part between the carbody structure made of sandwich composites and the metal underframe was joined by the proposed design.

  • PDF

The Influence of the Temperature Increase on the Tribological Behavior of DLC Films by RF-PECVD (RF-PECVD로 증착된 DLC 박막의 온도 변화에 따른 트라이볼로지 특성)

  • Lee Young-Ze;Cho Yong-Kyung;Shin Yun-Ha
    • Tribology and Lubricants
    • /
    • v.22 no.3
    • /
    • pp.127-130
    • /
    • 2006
  • DLC (Diamond Like Carbon) films show very desirable surface interactions with high hardness, low friction coefficient, and good wear-resistance properties. The friction behavior of hydrogenated DLC film is dependent on tribological environment, especially surrounding temperature. In this work, the tribological behaviors of DLC (Diamond-like carbon) films, prepared by the radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) method, were studied in elevated temperatures. The ball-on-disk tests with DLC films on steel specimens were conducted at a sliding speed of 60 rpm, a load of 10N, and surrounding various temperatures of $25^{\circ}C,\;40^{\circ}C,\;55^{\circ}C\;and\;75^{\circ}C$. The results show considerable dependency of DLC tribological parameters on temperature. The friction coefficient decreased as the surrounding temperature increased. After tests the wear tracks of hydrogenated DLC film were analyzed by optical microscope, scanning electron spectroscopy (SEM) and Raman spectroscopy. The surface roughness and 3-D images of wear track were also obtained by an atomic force microscope (AFM).

FT-NIR SPECTROSCOPY FOR QUALITY AND PROCESS CONTROL IN DEPTH FILTER SHEETS PRODUCTION

  • Jansen, Christoph;Ebert, Jurgen
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.3122-3122
    • /
    • 2001
  • Documented quality control plays a vital role I the production of technical “Depth filter” sheets used in industries such as Beverage and pharmaceutical. Depth filter sheets which can be up to several millimeters thick are stacker in plate and frame filter systems. They are the core of stainless steel filter systems which can be up to several meters high. FT-NIR Spectroscopy has many potential applications in the whole production line of filter sheets. Raw materials such as different types of cellulose pads, white powdery fillers (e.g. Kieelgur, Perlite) or liquid chemicals such as wet-strength agents we, with the help of NIR, easy to identify. NIR can also determine physical parameters such as particle size, essential for the filtration behavior. FT-NIR can be used for the quality parameters of the final product. Moisture and permeability can be determined, and with the help of the speed of this NIR method it is possible to correct possible faults quickly in the production process. Waste production can be minimized which is good for both the product profitability and the environment. Further tests have shown that it is also possible to use NIR on-line in the production area, to check the concentrations and the homogeneity of the paper suspension consisting of cellulose fibres, fillers and additives.

  • PDF

A Study on Monitoring Drilling using Torque from Main Spindle Based on PLC in CNC Machine Tools (PLC 기반 주축 모터의 토크에 의한 드릴링 절삭상태 감시에 관한 연구)

  • Yoon, Sang-hwan;Moon, Sung-min;Lyu, Sung-ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.7-15
    • /
    • 2018
  • Drilling processes require a cutting monitoring function that can be analyzed and gives feedback about strange conditions, tool collision and tool wear in real time. In this study, we proposed a drill monitor using the torque from the main spindle in CNC machine tools and a PROFIBUS network as a PLC-based interface. This paper studied drilling torque changes depending on drill size, the repetition cutting of the drilling and the drill's wear in the same cutting conditions. The material of the drills was high speed steel (HSS) and uncoated. The drills chosen were 2.7 mm, 6.7 mm, and 10.0 mm in diameter. These drills were selected because they had basic holes for their taps.

Wind fragility analysis of RC chimney with temperature effects by dual response surface method

  • Datta, Gaurav;Sahoo, Avinandan;Bhattacharjya, Soumya
    • Wind and Structures
    • /
    • v.31 no.1
    • /
    • pp.59-73
    • /
    • 2020
  • Wind fragility analysis (WFA) of concrete chimney is often executed disregarding temperature effects. But combined wind and temperature effect is the most critical limit state to define the safety of a chimney. Hence, in this study, WFA of a 70 m tall RC chimney for combined wind and temperature effects is explored. The wind force time-history is generated by spectral representation method. The safety of chimney is assessed considering limit states of stress failure in concrete and steel. A moving-least-squares method based dual response surface method (DRSM) procedure is proposed in WFA to alleviate huge computational time requirement by the conventional direct Monte Carlo simulation (MCS) approach. The DRSM captures the record-to-record variation of wind force time-histories and uncertainty in system parameters. The proposed DRSM approach yields fragility curves which are in close conformity with the most accurate direct MCS approach within substantially less computational time. In this regard, the error by the single-level RSM and least-squares method based DRSM can be easily noted. The WFA results indicate that over temperature difference of 150℃, the temperature stress is so pronounced that the probability of failure is very high even at 30 m/s wind speed. However, below 100℃, wind governs the design.

LASER WELDING APPLICATION IN CAR BODY MANUFACTURING

  • Shin, Hyun-Oh;Chang, In-Sung;Jung, Chang-Ho
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.181-186
    • /
    • 2002
  • Laser welding application for car body manufacturing has many advantages in the stiffness and the lightness of vehicle, the productivity of assembly line, and the degree of freedom in design. This presentation will express the innovation of car body manufacturing including parameter optimization, process modeling, and system integration. In this application the investment for systems was cut down dramatically by real time switching over the laser path between two welding stations. Points of technical discussion are as follows: optimization of parameters such as laser power, robot speed and trajectory, compact and useful design of jig & fixture to assure welding quality for 3 sheet-layer zinc-coated steel, system integration between 4kW Nd:YAG laser device and the other systems, on-line real time welding quality monitoring system, perfect safety standards for high power laser, minimization of consumption costs such as arc lamp, protective glass for optic, etc. Laser welding has found a place on Hyundai's production plant in conjunction with the startup of mass production of new sports car, and this production system is the result of a collaboration of its engineers. Outer side sheets are joined to inner side sheets by 122 stitch welds totally. And the length is about 2.4meter.

  • PDF

A study of Frictional Behavior of SCM415 Steel as a Function of Density of Micro Dimples (미세 딤플의 밀도에 따른 SCM415강의 마찰 거동 연구)

  • Cho, Min-Haeng;Lee, Seung-Hyuk;Park, Sang-Il;Lyo, In-Woong
    • Tribology and Lubricants
    • /
    • v.26 no.6
    • /
    • pp.311-316
    • /
    • 2010
  • Surface texturing of micro dimple or pore-shaped pattern was prepared using a fiber laser system. Surface texturing was designed to have a square pattern with a particular pitch distance for each corresponding density of 5, 10, 20, and 30%. Thermal damages such as bulges and burrs formed during laser irradiation were observed around the dimples. Thermal damages were later removed by lapping using alumina particles of $0.3{\mu}m$ in diameter. Oscillating friction tests were performed against heat-treated high speed steels under lubricated condition. The lubricant used was SAE 5W-30 automotive engine oil. Normal contact pressure and oscillating frequency was 0.28 MPa and 20 Hz, respectively. The tests were continued for 20 minutes, and friction plots were recorded for examination. Results revealed that the coefficient of friction was lowered regardless of texturing density. Moreover, the lowest coefficient of friction was obtained for 10% density texturing. It is attributed to increased lubricity due to the introduction of surface texturing. In addition, it is concluded that the optimum texturing density and pattern must be found for the best lubricity and low friction.

Impact effect analysis for hangers of half-through arch bridge by vehicle-bridge coupling

  • Shao, Yuan;Sun, Zong-Guang;Chen, Yi-Fei;Li, Huan-Lan
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.1
    • /
    • pp.65-75
    • /
    • 2015
  • Among the destruction instances of half-through arch bridges, the shorter hangers are more likely to be ruined. For a thorough investigation of the hanger system durability, we have studied vehicle impact effect on hangers with vehicle-bridge coupling method for a half-through concrete-filled-steel-tube arch bridge. A numerical method has been applied to simulate the variation of dynamic internal force (stress) in hangers under different vehicle speeds and road surface roughness. The characteristics and differences in impact effect among hangers with different length (position) are compared. The impact effect is further analyzed comprehensively based on the vehicle speed distribution model. Our results show that the dynamic internal force induced by moving vehicles inside the shorter hangers is significantly greater than that inside the longer ones. The largest difference of dynamic internal force among the hangers could be as high as 28%. Our results well explained a common phenomenon in several hanger damage accidents occurred in China. This work forms a basis for hanger system's fatigue analysis and service life evaluation. It also provides a reference to the design, management, maintenance, monitoring, and evaluation for this kind of bridge.

Experimental investigations of the seismic performance of bridge piers with rounded rectangular cross-sections

  • Shao, Guangqiang;Jiang, Lizhong;Chouw, Nawawi
    • Earthquakes and Structures
    • /
    • v.7 no.4
    • /
    • pp.463-484
    • /
    • 2014
  • Solid piers with a rounded rectangular cross-section are widely used in railway bridges for high-speed trains in China. Compared to highway bridge piers, these railway bridge piers have a larger crosssection and less steel reinforcement. Existing material models cannot accurately predict the seismic behavior of this kind of railway bridge piers. This is because only a few parameters, such as axial load, longitudinal and transverse reinforcement, are taken into account. To enable a better understanding of the seismic behavior of this type of bridge pier, a simultaneous influence of the various parameters, i.e. ratio of height to thickness, axial load to concrete compressive strength ratio and longitudinal to transverse reinforcements, on the failure characteristics, hysteresis, skeleton curves, and displacement ductility were investigated. In total, nine model piers were tested under cyclic loading. The hysteretic response obtained from the experiments is compared with that obtained from numerical studies using existing material models. The experimental data shows that the hysteresis curves have significantly pinched characteristics that are associated with small longitudinal reinforcement ratios. The displacement ductility reduces with an increase in ratio of axial load to concrete compressive strength and longitudinal reinforcement ratio. The experimental results are largely in agreement with the numerical results obtained using Chang-Mander concrete model.

Development of Automatic Coil-Handling Crane Control System (크레인 무인 자동 운전 시스템 개발)

  • Choi Chintae;Shin K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.126-133
    • /
    • 2004
  • Lots of researches and applications on the automated overhead cranes in shops have been done for some decades, but a few successful results are reported. Integrated crane control systems designed by famous engineering companies are still expensive and are not satisfactory in view of maintenance and reliability. A more reasonable control system fit to requirements of manufacturing industries is suggested in the study. The new deigned system has superior capabilities for anti-sway of rope and position control. The controller for automated operations is composed of a Linux-based PC for non real-time control and a high-speed PLC for hard real-time control. Some algorithms required for coil yard operations as well as main control algorithms such as reference position generation, position control and anti-sway control have been designed and fully tested on the new crane simulator. The designed crane control system showed satisfactory performance on position control accuracy and anti-sway of rope. The maximum positional error is 8mm and the maximum sway error is 0.1 degrees. The suggested control strategies have been successfully applied to the 10-1 crane in No. 4 CGL of in the Kwangyang Steel Works and in commercial operation.

  • PDF