• Title/Summary/Keyword: High speed steel

Search Result 786, Processing Time 0.027 seconds

Effect of Nitrogen Gas Pressure on the Property of TiN-Coated Layer of High Speed Steel by Arc ion Plating (AIP 법에서 질소가스 압력이 고속도강의 TiN 코팅층 성질에 미치는 영향)

  • Kim, Hae-Ji;Joun, Man-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.7
    • /
    • pp.124-130
    • /
    • 2008
  • The effect of nitrogen gas pressure in arc ion plating on surface properties of the TiN-coated high speed steel(SKH51) is presented in this paper. The surface roughness, micro-particle, micro-hardness, coated thickness, atomic distribution of TiN, and adhesion strength are measured fur various nitrogen gas pressures. It has been shown that the nitrogen gas pressure has a considerable effect on the surface roughness, adhesion strength, atomic distribution of TiN, and surface deposition of TiN of the high speed steels but that it has little influence on the micro-hardness and coated thickness.

Design of small impact test device for concrete panels subject to high speed collision

  • Kim, Sanghee;Jeong, Seung Yong;Kang, Thomas H.K.
    • Advances in concrete construction
    • /
    • v.7 no.1
    • /
    • pp.23-30
    • /
    • 2019
  • Five key items were used to create an economical and physically small impact test device for concrete panels subject to high speed collision: an air-compressive system, carbon steel pipe, solenoid valve, carrier and carrier-blocking, and velocity measurement device. The impact test device developed can launch a 20 mm steel spherical projectile at over 200 m/s with measured impact and/or residual velocity. Purpose for development was to conduct preliminary materials tests, prior to large-scale collision experiments. In this paper, the design process of the small impact test device was discussed in detail.

Effect of thickness and reinforcement on concrete plates under high speed projectiles

  • Tais, Abdalla S.;Ibraheem, Omer F.;Raoof, Saad M.
    • Structural Engineering and Mechanics
    • /
    • v.82 no.5
    • /
    • pp.587-594
    • /
    • 2022
  • Behavior of concrete elements under the effect of high-speed projectiles has gain increasing interest recently. It's necessary to understand how far the concrete can absorb the effect of bullets in order to save the occupants when design security and military infrastructures. This study presents a total of 18 concrete slabs casted and tested under reinforcement ratios, 0%, 0.35% and 0.7%. Parameters interested were slab thickness, (50 mm, 100 mm, and 150 mm) and type of weapon. All specimens tested to investigate their response under the effect of attacking by two common types of weapon. In general, it was found that projectile penetration was controlled by their thickness regardless the steel reinforcement ratio. However, the steel reinforcement controls the damage.

Weldability of Low Carbon Steel with Al Coating Condition by Nd:YAG Laser (저탄소강의 알루미늄 도금조건에 따른 Nd:YAG 레이저 용접성)

  • Kim, Jong-Do;Lee, Jung-Han;Kim, Sook-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.736-743
    • /
    • 2007
  • Laser welding has the advantage of high welding speed and Provides low heat distortion Thus laser welding is a very attractive process for joining thin steel sheet and surface treated steel sheet. And the major item in market for surface treated steel sheet is zinc coated steel. However. the laser welding of zinc coated steel is very difficult because of its low boiling point. Compared with zinc, on the other hand, aluminum has a high boiling point. Thus, laser weldability of aluminized steel is better than that of zinc coated steel. Moreover aluminized steel sheet is a material with excellent heat resistance, thermal reflection and corrosion resistance. The results of laser weldability of the aluminized steel for the full penetration welding will be described in this paper We focused on the investigation of the phenomenons caused by coating condition and behavior of aluminum in weld.

A Study on the Feasibility of Partial Penetration Laser Welding for the Lap Joint of 390MPa High Strength Steel Sheets (390MPa급 고장력강판의 경치기 레이저 용접에서 부분용입 용접의 적용 가능성에 대한 연구)

  • 이경돈;박기영;김주관
    • Journal of Welding and Joining
    • /
    • v.20 no.2
    • /
    • pp.95-101
    • /
    • 2002
  • After high power lasers are avaliable in the commercial market, the number of applications of the laser welding has been increased in manufacturing industries. Although the tailored blank laser welding of butt jointed steel sheets is well known recently in the automotive industries, the lap joint laser welding is a new technology to the automotive manufacturing people as well as the design people. But the deep penetration laser welding seems to be preferred to the partial penetration welding for the lap joint welding in the automotive manufacturers because the partial penetration is a serious deflect for the butt joint. In this study, the feasibility of partial penetration welding fur the lap joint $CO_2$ laser welding was studied fur the 1mm thick 390MPa high strength steel sheets for automotive bodies. The process window of the lap joint partial penetration welding was obtained from experiments with the gap size and the welding speed as process parameters. The partial penetration welding was found excellent on the basis of the tensile shear strength and sectional geometry. The bead width, input energy Per volume, tensile-shear strength, deformation energy and the sectional geometries after tensile-shear tests of partial penetration welded specimens are compared with those of full penetration welded specimens with a series of gaps and welding speeds.

Effects of the Gap and the Speed on the Lap-Joint $CO_2$ Laser Welding of Automotive Steel Sheets (자동차용 강판의 겹치기 $CO_2$ 레이저 용접에서 용접속도와 판재간격에 따른 용접특성 연구)

  • 이경돈;박기영;김주관
    • Journal of Welding and Joining
    • /
    • v.20 no.4
    • /
    • pp.510-516
    • /
    • 2002
  • Recently the laser welding technology has been applied increasingly for the automotive bodies. But the lap joint laser welding for 3 dimensional automotive body is new while the butt joint laser welding is well known as the tailored blank technology. In this study, the process window was found for the full penetration welding of the lap joint of the 1mm-thick high strength steel sheets. The limit curves and characteristic curves were suggested to define the boundaries and the contour lines in a space of the welding speed and the gap size. The characteristics of the weld sectional geometry were used to determine the limit curves. They are bead width, penetration depth and sectional area. After the observed data was analysed carefully, it was noticed that there was a transition point at which the sectional shape was changed and the bead area jumped as the welding speed was increased. Also a new concept of 'input energy Per volume' was suggested to distinguish the difference at the transition Point. The difference of sectional areas at the transition point can be related to the dynamic keyhole phenomena.

Reliability-based assessment of American and European specifications for square CFT stub columns

  • Lu, Zhao-Hui;Zhao, Yan-Gang;Yu, Zhi-Wu;Chen, Cheng
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.811-827
    • /
    • 2015
  • This paper presents a probabilistic investigation of American and European specifications (i.e., AISC and Eurocode 4) for square concrete-filled steel tubular (CFT) stub columns. The study is based on experimental results of 100 axially loaded square CFT stub columns from the literature. By comparing experimental results for ultimate loads with code-predicted column resistances, the uncertainty of resistance models is analyzed and it is found that the modeling uncertainty parameter can be described using random variables of lognormal distribution. Reliability analyses were then performed with/without considering the modeling uncertainty parameter and the safety level of the specifications is evaluated in terms of sufficient and uniform reliability criteria. Results show that: (1) The AISC design code provided slightly conservative results of square CFT stub columns with reliability indices larger than 3.25 and the uniformness of reliability indices is no better because of the quality of the resistance model; (2) The uniformness of reliability indices for the Eurocode 4 was better than that of AISC, but the reliability indices of columns designed following the Eurocode 4 were found to be quite below the target reliability level of Eurocode 4.

The Estimation of Dynamic/Impact Strength Characteristics of High Tensile Steel by Dynamic Lethargy Coefficient (동적무기력계수에 의한 고장력강의 동적.충격강도 특성 평가)

  • 송준혁;박정민;채희창;강희용;양성모
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.96-100
    • /
    • 2002
  • The purpose of this paper is presented a rational method of predicting dynamic/impact tensile strength of high tensile steel materials widely used fur structural material of automobiles. It is known that the ultimate strength is related with the loading speed and the Lethargy Coefficient from the tensile test. The Dynamic Lethargy Coefficient is proportional to the disorientation of the molecular structure and indicates the magnitude of defects resulting from the probability of breaking the bonds responsible for its strength. The coefficient is obtained from the simple tensile test such as failure time and stresses at fracture. These factors not only affect the static strength but also have a great influence on the dynamic/impact characteristics of the joist and the adjacent structures. This strength is used to analyze the failure life prediction of mechanical system by virtue of its material fracture. The impact tensile test is performed to evaluate the life parameters due to loading speed with the proposed method. Also the evaluation of the dynamic/impact effect on the material tensile strength characteristics is compared with the result of Campbell-Cooper equation to verify the proposed method.

Microstructural Characteristics of Rapidly Solidified Highly Alloyed High Speed Tool Steels (급속응고한 고합금 고속도 공구강의 미세조직 특성)

  • Lee, In-Woo;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.15 no.3
    • /
    • pp.242-251
    • /
    • 1995
  • Highly alloyed high speed tool steels(ASP steels) were rapidly solidified by melt spinning process, and the microstructures of melt spun tool steel ribbons were examined by optical microscopy and transmission electron microscopy with energy dispersive x-ray spectroscope. The microstructure of melt spun tool steel ribbon was found to be consisted of ${\delta}-ferrite$ cells surrounded by austenite and V-rich MC carbides. The size of ${\delta}-ferrite$ cells and intercellular MC carbides were about $0.4{\mu}m$ or less and 30nm or less, respectively. From the melt spun tool steel ribbons, only the MC type carbide phase was observed, instead of $M_2C$, $M_{23}C_6$ and $M_6C$ carbides which were generally observed in other rapidly solidified high speed steels. Such a change in type of carbide phase formed could be attributed to the increase in alloying content of vanadium and carbon. However, changes in microsturcture of melt spun tool steels with alloying content of cobalt, vanadium and carbon were not observed.

  • PDF

A Study on Behavioral Characteristics of Track Roadbed according to Steel Pipe Press-in Excavation during Construction of Underground Railway Crossing

  • Kim, Young-Ha;Eum, Ki-Young;Kim, Jae-Wang
    • International Journal of Railway
    • /
    • v.6 no.2
    • /
    • pp.69-77
    • /
    • 2013
  • In this study, numerical analysis and model experiments were conducted to analyze behavioral characteristics acting on the track roadbed with excavation through steel pipe injection, a non-exclusive method of crossing construction under railroad as primary target. In model experiments that simulate injection excavation behaviors with an increase in the depth of soil cover, the upper displacement was measured by construction of the first and the second pipes in order to predict actual behaviors, and the behavior characteristics were verified through numerical analysis. The investigation results showed that surface displacement was smaller under the condition of higher soil cover. In the case of injecting two pipes, when the first pipe was injected, deformation of the surface increased linearly in both settlement and uplift experiments. However, when the second pipe was injected, the amount of change was found to be very small due to the relaxation and plastic zones around the first pipe. In addition, the results of numerical analysis on the same cross section with the model experiment found that the results of investigation into settlement ratio and volume loss were in very good agreement with those obtained by the model experiment.