• Title/Summary/Keyword: High speed front impact

Search Result 20, Processing Time 0.021 seconds

Light Weighted Design of Aluminum Bumper Backbeam by Rib Shape Change (리브 형상 변경에 의한 알루미늄 범퍼 백빔의 경량화 설계)

  • Kang, Sungjong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.2
    • /
    • pp.6-12
    • /
    • 2018
  • Optimized section shape of aluminum bumper backbeam for enhancing the front high speed crashworthiness was investigated. Front body analysis model of a convertible vehicle was built up and parameter studies were carried out with changing the inner rib shape and the section thickness distribution. First an inner rib shape displaying most efficient structural performance was selected. Next, for the selected section the effect of section thickness combination was examined. Also, a light weighed backbeam section displaying crash performance over the current design was suggested. Finally RCAR front low speed impact analyses were carried out for the optimized models.

Study on the Crashworthiness Analysis and Evaluation of the High-Speed EMU (동력분산형 고속전철의 충돌안전도 해석 및 평가기술 연구)

  • Koo, Jeong-Seo;Kim, Geo-Young;Cho, Hyun-Jik
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1213-1220
    • /
    • 2008
  • In this study, the crashworthy design guidelines for the high speed EMU were derived and numerically evaluated. As for this high speed train, there are several different features from the KTX in that the conventional type bogies are adopted and the front end car (TC car) accommodates passengers. It is natural that the impact acceleration of the front end car should be controlled under the appropriate level stipulated at safety regulations for collision accidents. Also, car-to-car interfacing structures and devices should be deliberately designed to prevent overriding and telescoping mechanisms. As the first step for these design countermeasures, it was studied that how much impact energy should be absorbed at the energy absorbing zones and devices of each carbody to satisfy the impact acceleration regulations of the safety regulations. These results will be used as the crashworthy design guidelines for the high speed train in the next year research.

  • PDF

A Study on the Signal Transmissibility of High Frequency Crash Pulse according to the Car Structure Difference (차체 구조 차이에 따른 충돌 고주파 신호 전달성 연구)

  • Park, Dongkyou
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.8-15
    • /
    • 2013
  • Wide range frequency pulses occur in a car crash test. Until now, low frequency under 400Hz has been used to determine an airbag deployment criteria. Also, FIS (Front Impact Sensor) has been used to detect the crash pulse in early stage. Nowadays, technology to determine an airbag delpoyment criteria by using a high frequency crash pulse without FIS is being focused on. In this paper, the signal transmissibility of high frequency pulse for two different cars was studied. Also, signal transfer test of high frequency pulse was done by using a high speed ball impact. Signal runtime of the frontal impact is compared with that of the side impact. The signal transmissibility difference due to the car structure difference was discussed and structure change for improving the signal transmissibility was proposed.

Spray Angle and Break-up Characteristics of Supersonic Liquid Jets by an Impinging Methods with High Speed Projectile (초고속 발사체의 액체 저장부 충돌에 의한 초음속 액체 제트의 분무 속도 및 분열 특성)

  • Lee, In-Chul;Shin, Jeung-Hwan;Kim, Heuy-Dong;Koo, Ja-Ye
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.1
    • /
    • pp.55-60
    • /
    • 2011
  • Pulsed supersonic liquid jets injected into an ambient air are empirically studied by using a high pressure ballistic range system. Ballistic range systems which are configured with high-pressure tube, pump tube, launch tube and liquid storage nozzle. Experimental studies are conducted to use with various impact nozzle geometry. Supersonic liquid jets are generated by an impact of high speed of the projectile. High speed liquid jets are injected with M = 3.2 which pressure is 1.19 GPa. Multiple jets which accompany with shock wave and pressure wave in front of the jet were observed. The shock-wave affects significantly atomization process for each spray droplets. As decreasing orifice diameter, the averaged SMD of spray jets had the decreasing tendency.

ADC-Based Backplane Receivers: Motivations, Issues and Future

  • Chung, Hayun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.3
    • /
    • pp.300-311
    • /
    • 2016
  • The analog-to-digital-converter-based (ADC-based) backplane receivers that consist of a front-end ADC followed by a digital equalizer are gaining more popularity in recent years, as they support more sophisticated equalization required for high data rates, scale better with fabrication technology, and are more immune to PVT variations. Unfortunately, designing an ADC-based receiver that meets tight power and performance budgets of high-speed backplane link systems is non-trivial as both front-end ADC and digital equalizer can be power consuming and complex when running at high speed. This paper reviews the state of art designs for the front-end ADC and digital equalizers to suggest implementation choices that can achieve high speed while maintaining low power consumption and complexity. Design-space exploration using system-level models of the ADC-based receiver allows through analysis on the impact of design parameters, providing useful information in optimizing the power and performance of the receiver at the early stage of design. The system-level simulation results with newer device parameters reveal that, although the power consumption of the ADC-based receiver may not comparable to the receivers with analog equalizers yet, they will become more attractive as the fabrication technology continues to scale as power consumption of digital equalizer scales well with process.

An Estimating Algorithm of Vehicle Collision Speed Through Images of Blackbox (블랙박스 영상 분석을 통한 차량 충돌 속도 연산 알고리즘에 대한 융복합 연구)

  • Ko, Kwang-Ho
    • Journal of Digital Convergence
    • /
    • v.16 no.9
    • /
    • pp.173-178
    • /
    • 2018
  • The vehicle collision speed in mid and high range can be checked by EDM(Event Driven memory) data recorded when the air bag works. But it's difficult to estimate the low speed of vehicle collision. And estimating the speed is important because the injury level can be changed by the impact speed. The study proposed an estimating algorithm by analysing the images recorded in car blackbox instrument. Low speed rear collision accidents simulated with wire winding motor for various vehicle types. The study estimated the impact speed with the ratio of the distance change between two vehicles and the length change of the number plate of front vehicle. The closer the vehicles are, the larger the plate length is. You can estimate the impact speed with the ratio. The impact speed is calculated with the initial distance for a specific length of number plate in the algorithm. The results can be applied to the linear rear collision because the angle of impact was not considered in this study.

Crashworthiness on the final design of the KHST power-car (한국형 고속전철 동력차 최종설계의 충돌안전도 분석)

  • 노규석;구정서;송달호
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.235-242
    • /
    • 2000
  • The most important technology to improve crashworthiness of high speed trains is to design their front structures to absorb crash energy easily. In this paper, crashworthy designs of the front structures in KTX and KHST are compared by numerical simulation under SNCF accident scenario. Furthermore, to evaluate their crashworthiness tinder a typical real situation, the power cars are simulated for the accident collided against a deformable dump truck of 15 tons at 110 kph. The front structure of KHST, finally designed, shows a good crashworthy characteristics. Finally, the impact strength of coupling components is evaluated by analyzing a consist of the front three KHST units under scenario of train-to-train collision at 30 kph.

  • PDF

The study of batting characteristics in elite baseball players (엘리트 야구 선수의 타격 특성 연구)

  • Lee, Young-Suk
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.1
    • /
    • pp.173-184
    • /
    • 2003
  • The purpose of this study was to investigate the batting characteristics in elite baseball players. Seven skilled collegiate players hit the ball which was thrown by a pitching machine linearly and strongly to the center of the field. Time, velocity, angle and pound reaction force variables were measured by using high-speed video cameras and pound reaction force analyzer. The results were as follows: 1. The elite players finished their stride performance in a short time and they stayed longer in a swing phase. The increases in the range of trunk rotation were associated with the delay of the swing phase. 2. The 'take-back' phenomenon in the trunk was showed after the stride phase. 3. The down swing demonstrated powerful line drives. 4. Equivalent body weights were placed on both feet during the ready phase. 95% of the body weights were moved to the rear foot during the stride phase, whereas the body weights were driven to the front foot during the swing phase. 95% of the body weights were placed on the front foot at impact.

A Study of KHST Passenger Safety During Accidents by Computer Simulation Techniques (컴퓨터 시뮬레이션 기법을 이용한 고속전철 승객안전도 해석 및 평가)

  • 윤영한;구정서;이재완
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.1
    • /
    • pp.15-20
    • /
    • 2003
  • The computer simulation techniques were adopted to evaluate the effects of seating positions of passenger under various accident scenarios. The baseline of computer simulation model was tuned by the sled impact tests which conducted under the upright and standard seating positions. This study shows the effect of relative velocity between occupant and struck vehicle while occupant is impacted to a front seat's seatback. Although, base on the current accident scenarios, The KHST is performed well enough to protect average adult male occupants. However, Results from the tests indicate small size occupant or higher impact speed may cause sever neck and femur injuries.

VISUALIZATION AND MEASUREMENT OF A NARROW-CONE DI GASOLINE SPRAY FOR THE IMPINGEMENT ANALYSIS

  • Park, J.S.;Im, K.S.;Kim, H.S.;Lai, M.C.
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.221-238
    • /
    • 2004
  • Wall interactions of direct injection spray were investigated using laser-sheet imaging, shadowgraphy, wetted footprint and phase Doppler interferometry techniques. A narrow-cone high-pressure swirl injector is used to inject iso-octane fuel onto a plate, which has three different impact angles inside a pressurized chamber. Heated air and plate conditions were compared with unheated cases. Injection interval was also varied in the heated case to compare dry- and wet- wall impingement behaviors. High-speed macroscopic Mie-scattering images showed that presence of wall and air temperature has only minor effect on the bulk spray structure and penetration speed for the narrow-cone injector tested. The overall bulk motions of the spray plume and its spatial position at a given time are basically unaffected until a few millimeters before impacting the wall. The surface properties of the impact surface, such as the temperature, the presence of a preexisting liquid film also have a small effect on the amount of wetting or the wetted footprint; however, they have strong influence on what occurs just after impact or after a film is formed. The shadowgraph in particular shows that the plate temperature has a significant effect on vapor phase propagation. Generally, 10-20% faster horizontal vapor phase propagation is observed along the wall at elevated temperature condition. For impingement onto a preexisting film, more splash and evaporation were also observed. Contrary to some preconceptions, there is no significant splashing and droplet rebounding from surfaces that are interposed in the path of the DI gasoline spray, especially for the oblique impact angle cases. There also appears to be a dense spray front consists of large sac spray droplets in the oblique impact angle cases. The bulk of the spray is not impacted on the surface, but rather is deflected by it The microscopic details as depicted by phase Doppler measurements show that the outcome of the droplet impaction events can be significantly influenced. Only droplets at the spray front have high enough Weber numbers for wall impact to wet, splash or rebound. Using the sign of vertical velocity, the time-resolved downward droplets and upward droplets are compared. The Weber number of upward moving droplets, which seldom exceeds unity, also decreases as the impact angle decreases, as the droplets tend to impact less and move along the wall in the deflected spray plume.