The Effect of Attributes of Innovation and Perceived Risk on Product Attitudes and Intention to Adopt Smart Wear (스마트 의류의 혁신속성과 지각된 위험이 제품 태도 및 수용의도에 미치는 영향)
- Ko, Eun-Ju;Sung, Hee-Won;Yoon, Hye-Rim
-
- Journal of Global Scholars of Marketing Science
- /
- v.18 no.2
- /
- pp.89-111
- /
- 2008
-
Due to the development of digital technology, studies regarding smart wear integrating daily life have rapidly increased. However, consumer research about perception and attitude toward smart clothing hardly could find. The purpose of this study was to identify innovative characteristics and perceived risk of smart clothing and to analyze the influences of theses factors on product attitudes and intention to adopt. Specifically, five hypotheses were established. H1: Perceived attributes of smart clothing except for complexity would have positive relations to product attitude or purchase intention, while complexity would be opposite. H2: Product attitude would have positive relation to purchase intention. H3: Product attitude would have a mediating effect between perceived attributes and purchase intention. H4: Perceived risks of smart clothing would have negative relations to perceived attributes except for complexity, and positive relations to complexity. H5: Product attitude would have a mediating effect between perceived risks and purchase intention. A self-administered questionnaire was developed based on previous studies. After pretest, the data were collected during September, 2006, from university students in Korea who were relatively sensitive to innovative products. A total of 300 final useful questionnaire were analyzed by SPSS 13.0 program. About 60.3% were male with the mean age of 21.3 years old. About 59.3% reported that they were aware of smart clothing, but only 9 respondents purchased it. The mean of attitudes toward smart clothing and purchase intention was 2.96 (SD=.56) and 2.63 (SD=.65) respectively. Factor analysis using principal components with varimax rotation was conducted to identify perceived attribute and perceived risk dimensions. Perceived attributes of smart wear were categorized into relative advantage (including compatibility), observability (including triability), and complexity. Perceived risks were identified into physical/performance risk, social psychological risk, time loss risk, and economic risk. Regression analysis was conducted to test five hypotheses. Relative advantage and observability were significant predictors of product attitude (adj
$R^2$ =.223) and purchase intention (adj$R^2$ =.221). Complexity showed negative influence on product attitude. Product attitude presented significant relation to purchase intention (adj$R^2$ =.692) and partial mediating effect between perceived attributes and purchase intention (adj$R^2$ =.698). Therefore hypothesis one to three were accepted. In order to test hypothesis four, four dimensions of perceived risk and demographic variables (age, gender, monthly household income, awareness of smart clothing, and purchase experience) were entered as independent variables in the regression models. Social psychological risk, economic risk, and gender (female) were significant to predict relative advantage (adj$R^2$ =.276). When perceived observability was a dependent variable, social psychological risk, time loss risk, physical/performance risk, and age (younger) were significant in order (adj$R^2$ =.144). However, physical/performance risk was positively related to observability. The more Koreans seemed to be observable of smart clothing, the more increased the probability of physical harm or performance problems received. Complexity was predicted by product awareness, social psychological risk, economic risk, and purchase experience in order (adj$R^2$ =.114). Product awareness was negatively related to complexity, meaning high level of product awareness would reduce complexity of smart clothing. However, purchase experience presented positive relation with complexity. It appears that consumers can perceive high level of complexity when they are actually consuming smart clothing in real life. Risk variables were positively related with complexity. That is, in order to decrease complexity, it is also necessary to consider minimizing anxiety factors about social psychological wound or loss of money. Thus, hypothesis 4 was partially accepted. Finally, in testing hypothesis 5, social psychological risk and economic risk were significant predictors for product attitude (adj$R^2$ =.122) and purchase intention (adj$R^2$ =.099) respectively. When attitude variable was included with risk variables as independent variables in the regression model to predict purchase intention, only attitude variable was significant (adj$R^2$ =.691). Thus attitude variable presented full mediating effect between perceived risks and purchase intention, and hypothesis 5 was accepted. Findings would provide guidelines for fashion and electronic businesses who aim to create and strengthen positive attitude toward smart clothing. Marketers need to consider not only functional feature of smart clothing, but also practical and aesthetic attributes, since appropriateness for social norm or self image would reduce uncertainty of psychological or social risk, which increase relative advantage of smart clothing. Actually social psychological risk was significantly associated to relative advantage. Economic risk is negatively associated with product attitudes as well as purchase intention, suggesting that smart-wear developers have to reflect on price ranges of potential adopters. It will be effective to utilize the findings associated with complexity when marketers in US plan communication strategy.