• Title/Summary/Keyword: High resolution studies

Search Result 764, Processing Time 0.032 seconds

Prolotherapy in Orthopedic Field (정형외과 영역에서의 증식치료)

  • Shon, Min Soo;Yoo, Jae Chul
    • The Journal of Korean Orthopaedic Ultrasound Society
    • /
    • v.4 no.2
    • /
    • pp.101-110
    • /
    • 2011
  • To describe the background, mechanism, clinical results and complications of prolotheapy based on the literature review. Prolotherapy is a minimally invasive injection-based treatment of chronic musculoskeletal pain, including ligament and joint laxity. The mechanism of this injection-based technique is to initiate a local inflammatory response with resultant tissue healing. The used proliferants are classified by bio-mechanism to act in three different ways as osmotic, irritants, and chemotatics. The most commonly used proliferant is hyperosmolar (10~25%) dextrose to act by osmotic rupture of cells. High resolution ultrasound imaging of musculoskeletal structure provide a more accurate diagnosis. Also ultrasound-guided intervention provides a more high efficacy and low rate of complications. The most common complication is local pain at the injected site, that is self-limited and good responsive to anti-inflammatory agents. Other complications are rare. It is reported that prolotherapy appears safe when performed by an experienced clinician. Prolotherapy has grown in popularity and has received significant recent attention. However there are limited evidence-based data supporting the indication and efficacy of prolotherapy in the treatment of chronic musculoskeletal pain or soft tissue injuries. Future studies are necessary to determine whether prolotherapy can play an independent and definitive role in a treatment for chronic musculoskeletal pain.

  • PDF

Increased Sensitivity of Carbon Nanotube Sensors by Forming Rigid CNT/metal Electrode

  • Park, Dae-Hyeon;Jeon, Dong-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.348-348
    • /
    • 2011
  • Carbon nanotube (CNT) field effect transistors and sensors use CNT as a current channel, of which the resistance varies with the gate voltage or upon molecule adsorption. Since the performance of CNT devices depends very much on the CNT/metal contact resistance, the CNT/electrode contact must be stable and the contact resistance must be small. Depending on the geometry of CNT/electrode contact, it can be categorized into the end-contact, embedded-contact (top-contact), and side-contact (bottom-contact). Because of difficulties in the sample preparation, the end-contact CNT device is seldom practiced. The embedded-contact in which CNT is embedded inside the electrode is desirable due to its rigidness and the low contact resistance. Fabrication of this structure is complicated, however, because each CNT has to be located under a high-resolution microscope and then the electrode is patterned by electron beam lithography. The side-contact is done by depositing CNT electrophoretically or by precipitating on the patterned electrode. Although this contact is fragile and the contact resistance is relatively high, the side-contact by far has been widely practiced because of its simple fabrication process. Here we introduce a simple method to embed CNT inside the electrode while taking advantage of the bottom-contact process. The idea is to utilize a eutectic material as an electrode, which melts at low temperature so that CNT is not damaged while annealing to melt the electrode to embed CNT. The lowering of CNT/Au contact resistance upon annealing at mild temperature has been reported, but the electrode in these studies did not melt and CNT laid on the surface of electrode even after annealing. In our experiment, we used a eutectic Au/Al film that melts at 250$^{\circ}C$. After depositing CNT on the electrode made of an Au/Al thin film, we annealed the sample at 250$^{\circ}C$ in air to induce eutectic melting. As a result, Au-Al alloy grains formed, under which the CNT was embedded to produce a rigid and low resistance contact. The embedded CNT contact was as strong as to tolerate the ultrasonic agitation for 90 s and the current-voltage measurement indicated that the contact resistance was lowered by a factor of 4. By performing standard fabrication process on this CNT-deposited substrate to add another pair of electrodes bridged by CNT in perpendicular direction, we could fabricate a CNT cross junction. Finally, we could conclude that the eutectic alloy electrode is valid for CNT sensors by examine the detection of Au ion which is spontaneously reduced to CNT surface. The device sustatined strong washing process and maintained its detection ability.

  • PDF

Genomic epidemiology for microbial evolutionary studies and the use of Oxford Nanopore sequencing technology (미생물 진화 연구를 위한 유전체 역학과 옥스포드 나노포어 염기서열분석 기술의 활용)

  • Choi, Sang Chul
    • Korean Journal of Microbiology
    • /
    • v.54 no.3
    • /
    • pp.188-199
    • /
    • 2018
  • Genomic epidemiology exploits various basic microbial research areas. High-throughput sequencing technologies dramatically have been expanding the number of microbial genome sequences available. Abundant genomic data provide an opportunity to perform strain typing more effectively, helping identify microbial species and strains at a higher resolution than ever before. Genomic epidemiology needs to find antimicrobial resistance genes in addition to standard genome annotations. Strain typing and antimicrobial resistance gene finding are static aspects of genomic epidemiology. Finding which hosts infected which other hosts requires the inference of transient transmission routes among infected hosts. The strain typing, antimicrobial resistance gene finding, and transmission tree inference would allow for better surveillance of microbial infectious diseases, which is one of the ultimate goals of genomic epidemiology. Among several high-throughput sequencing technologies, genomic epidemiology will benefit from the more portability and shorter sequencing time of the Oxford Nanopore Technologies's MinION, the third-generation sequencing technology. Here, this study reviewed computational methods for quantifying antimicrobial resistance genes and inferring disease transmission trees. In addition, the MinION's applications to genomic epidemiology were discussed.

A Study for Possibility to Detect Missing Sidewalk Blocks using Drone (드론을 이용한 보도블럭 탈락 탐지 가능성 연구)

  • Shin, Jung-il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.34-41
    • /
    • 2021
  • Sidewalks are facilities used for the safe and comfortable passage of pedestrians and are paved with blocks of various materials. Currently, Korea does not have a quantitative survey method for the pavement condition of sidewalks, so it is necessary to develop an efficient survey method. Drones are being used as an efficient survey tool in various fields, but there are limited studies in which sidewalks have been investigated. This study investigates the possibility of detection by limiting the missing sidewalk blocks using a drone. This study is an initial study on the development of a method for detecting damage in sidewalk blocks. For this, sidewalk blocks were artificially removed to simulate a dropout situation, and images were acquired with 0.7-cm resolution using a drone. As a characteristic of the point cloud data acquired through image pre-processing, there was high variance of the elevation of the points in the missing area of the sidewalk block. Using these characteristics, an experiment was conducted to detect the missing parts of the sidewalk block by applying four thresholds to the variance of the elevation of points included in the grid corresponding to the sidewalk area. As a result, the detection accuracy was shown with a positive detection ratio of 70-80%, omission errors of 20-30%, and commission errors lower than 2%. It is judged that the possibility of detecting missing sidewalk blocks is high. This study focused on detecting a simulated missing sidewalk block in a limited environment. Therefore, it is expected that an efficient and quantitative method of detecting damaged sidewalk blocks can be developed in the future through additional research with considerations of the actual environment.

An Analysis of Observational Environments for Solar Radiation Stations of Korea Meteorological Administration using the Digital Elevation Model and Solar Radiation Model (수치표고모델과 태양복사모델을 이용한 기상청 일사 관측소 관측환경 분석)

  • Jee, Joon-Bum;Zo, Il-Sung;Kim, Bu-Yo;Lee, Kyu-Tae
    • Journal of the Korean earth science society
    • /
    • v.40 no.2
    • /
    • pp.119-134
    • /
    • 2019
  • In order to analyze the observational environment of solar radiation stations operated by the Korea Meteorological Administration (KMA), we used the digital elevation model (DEM) and the solar radiation model to calculate a topographical shading, sky view factor (SVF) and solar radiation by surrounding terrain. The sky line and SVF were calculated using high resolution DEM around 25 km of the solar stations. We analyzed the topographic effect by analyzing overlapped solar map with sky line. Particularly, Incheon station has low SVF whereas Cheongsong and Chupungryong station have high SVF. In order to validation the contribution of topographic effect, the solar radiation calculated using GWNU solar radiation model according to the sky line and SVF under the same meteorological conditions. As a result, direct, diffuse and global solar radiation were decreased by 12.0, 5.6, and 4.7% compared to plane surface on Cheongsong station. The 6 stations were decreased amount of mean daily solar radiation to the annual solar radiation. Among 42 stations, eight stations were analyzed as the urgent transfer stations or moving equipment quickly and more than half of stations (24) were required to review the observational environment. Since the DEM data do not include artifacts and vegetation around the station, the stations need a detail survey of observational environment.

Evaluation of Possibility of Large-scale Digital Map through Precision Sensor Modeling of UAV (무인항공기 정밀 센서모델링을 통한 대축척 수치도화 가능성 평가)

  • Lim, Pyung-chae;Kim, Han-gyeol;Park, Jimin;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1393-1405
    • /
    • 2020
  • UAV (Unmanned Aerial Vehicle) can acquire high-resolution images due to low-altitude flight, and it can be photographed at any time. Therefore, the UAV images can be updated at any time in map production. Due to these advantages, studies on the possibility of producing large-scale digital maps using UAV images are actively being conducted. Precise digital maps can be used as base data for digital twins or smart cites. For producing a precise digital map, precise sensor modeling using GCPs (Ground Control Points) must be preceded. In this study, geometric models of UAV images were established through a precision sensor modeling algorithm developed in house. Then, a digital map by stereo plotting was produced to evaluate the possibility of large-scale digital map. For this study, images and GCPs were acquired for Ganseok-dong, Incheon and Yeouido, Seoul. As a result of precision sensor modeling accuracy analysis, high accuracy was confirmed within 3 pixels of the average error of the checkpoints and 4 pixels of the RMSE was confirmed for the two study regions. As a result of the mapping accuracy analysis, it satisfied the 1:1,000 mapping accuracy announced by the NGII (National Geographic information Institute). Therefore, the precision sensor modeling technology suggested the possibility of producing a 1:1,000 large-scale digital map by UAV images.

2D Backtracking Method of Ultrasonic Signal (초음파 신호의 2차원 역추적 방법에 관한 연구)

  • Kyu-Joung Lee;Choong Ho Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.3
    • /
    • pp.172-177
    • /
    • 2023
  • In this paper, 2-dimensional backtracking method for ultrasonic signals. Ultrasonic sensors are a common technology used in industrial fields as many studies have been conducted on distance measurement and indoor location tracking using transmission and reception devices in pairs. A method for tracking a signal of an arbitrary ultrasonic transmission device on a 2D plane using only a receiver of an ultrasonic signal is proposed. In order to track the ultrasonic signal, the receiver receives the signal by making at least three. The three receivers may calculate a direction and a distance using a time difference in which the ultrasound reception sound is reached. The existing method of tracking signal sources using ultrasonic waves has a problem of time synchronization of devices because the transceivers must be paired or installed independently for each sensor. In order to solve this problem, the distance of the ultrasonic receiver is minimized, and it is configured as one device. The sensor installed as one device may be processed by one operator, thereby solving the time synchronization problem. To increase time difference accuracy, high-speed 32-bit timers with high time resolution can be used to quickly calculate and track distances and directions.

THE LUMINOSITY-LINEWIDTH RELATION AS A PROBE OF THE EVOLUTION OF FIELD GALAXIES

  • GUHATHAKURTA PURAGRA;ING KRISTINE;RIX HANS-WALTER;COLLESS MATTHEW;WILLIAMS TED
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.63-64
    • /
    • 1996
  • The nature of distant faint blue field galaxies remains a mystery, despite the fact that much attention has been devoted to this subject in the last decade. Galaxy counts, particularly those in the optical and near ultraviolet bandpasses, have been demonstrated to be well in excess of those expected in the 'no-evolution' scenario. This has usually been taken to imply that galaxies were brighter in the past, presumably due to a higher rate of star formation. More recently, redshift surveys of galaxies as faint as B$\~$24 have shown that the mean redshift of faint blue galaxies is lower than that predicted by standard evolutionary models (de-signed to fit the galaxy counts). The galaxy number count data and redshift data suggest that evolutionary effects are most prominent at the faint end of the galaxy luminosity function. While these data constrain the form of evolution of the overall luminosity function, they do not constrain evolution in individual galaxies. We are carrying out a series of observations as part of a long-term program aimed at a better understanding of the nature and amount of luminosity evolution in individual galaxies. Our study uses the luminosity-linewidth relation (Tully-Fisher relation) for disk galaxies as a tool to study luminosity evolution. Several studies of a related nature are being carried out by other groups. A specific experiment to test a 'no-evolution' hypothesis is presented here. We have used the AUTOFIB multifibre spectro-graph on the 4-metre Anglo-Australian Telescope (AAT) and the Rutgers Fabry-Perot imager on the Cerro Tolalo lnteramerican Observatory (CTIO) 4-metre tele-scope to measure the internal kinematics of a representative sample of faint blue field galaxies in the red-shift range z = 0.15-0.4. The emission line profiles of [OII] and [OIII] in a typical sample galaxy are significantly broader than the instrumental resolution (100-120 km $s^{-l}$), and it is possible to make a reliable de-termination of the linewidth. Detailed and realistic simulations based on the properties of nearby, low-luminosity spirals are used to convert the measured linewidth into an estimate of the characteristic rotation speed, making statistical corrections for the effects of inclination, non-uniform distribution of ionized gas, rotation curve shape, finite fibre aperture, etc.. The (corrected) mean characteristic rotation speed for our distant galaxy sample is compared to the mean rotation speed of local galaxies of comparable blue luminosity and colour. The typical galaxy in our distant sample has a B-band luminosity of about 0.25 L$\ast$ and a colour that corresponds to the Sb-Sd/Im range of Hub-ble types. Details of the AUTOFIB fibre spectroscopic study are described by Rix et al. (1996). Follow-up deep near infrared imaging with the 10-metre Keck tele-scope+ NIRC combination and high angular resolution imaging with the Hubble Space Telescope's WFPC2 are being used to determine the structural and orientation parameters of galaxies on an individual basis. This information is being combined with the spatially resolved CTIO Fabry-Perot data to study the internal kinematics of distant galaxies (Ing et al. 1996). The two main questions addressed by these (preliminary studies) are: 1. Do galaxies of a given luminosity and colour have the same characteristic rotation speed in the distant and local Universe? The distant galaxies in our AUTOFIB sample have a mean characteristic rotation speed of $\~$70 km $s^{-l}$ after correction for measurement bias (Fig. 1); this is inconsistent with the characteristic rotation speed of local galaxies of comparable photometric proper-ties (105 km $s^{-l}$) at the > $99\%$ significance level (Fig. 2). A straightforward explanation for this discrepancy is that faint blue galaxies were about 1-1.5 mag brighter (in the B band) at z $\~$ 0.25 than their present-day counterparts. 2. What is the nature of the internal kinematics of faint field galaxies? The linewidths of these faint galaxies appear to be dominated by the global disk rotation. The larger galaxies in our sample are about 2"-.5" in diameter so one can get direct insight into the nature of their internal velocity field from the $\~$ I" seeing CTIO Fabry-Perot data. A montage of Fabry-Perot data is shown in Fig. 3. The linewidths are too large (by. $5\sigma$) to be caused by turbulence in giant HII regions.

  • PDF

Retrieval of High Resolution Surface Net Radiation for Urban Area Using Satellite and CFD Model Data Fusion (위성 및 CFD모델 자료의 융합을 통한 도시지역에서의 고해상도 지표 순복사 산출)

  • Kim, Honghee;Lee, Darae;Choi, Sungwon;Jin, Donghyun;Her, Morang;Kim, Jajin;Hong, Jinkyu;Hong, Je-Woo;Lee, Keunmin;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.295-300
    • /
    • 2018
  • Net radiation is the total amount of radiation energy used as a heat flux for the Earth's energy cycle, and net radiation from the surface is an important factor in areas such as hydrology, climate, meteorological studies and agriculture. It is very important to monitoring the net radiation through remote sensing to be able to understand the trend of heat island and urbanization phenomenon. However, net radiation estimation using only remote sensing data is generally causes difference in accuracy depending on cloud. Therefore, in this paper, we retrieved and monitored high resolution surface net radiation at 1 hour interval in Eunpyeong New Town where urbanization using Communication, Ocean and Meteorological Satellite (COMS), Landsat-8 satellite and Computational Fluid Dynamics (CFD) model data reflecting the difference in building height. We compared the observed and estimated net radiation at the flux tower. As a result, estimated net radiation was similar trend to the observed net radiation as a whole and it had the accuracy of RMSE $54.29Wm^{-2}$ and Bias $27.42Wm^{-2}$. In addition, the calculated net radiation showed well the meteorological conditions such as precipitation, and showed the characteristics of net radiation for the vegetation and artificial area in the spatial distribution.

High-Resolution CT Findings of Active Pulmonary Tuberculosis : Different Features Between AFB Stain Positive and Negative Group (활동성 폐결핵의 HRCT 소견 : 객담 도말 양성군과 음성군간의 비교)

  • An, Jeon-Ok;Yoon, Bo-Ra;Jung, Jin-Young;Kim, Yoo-Kyung;Baek, Man-Sun;Kim, Ki-Up;Na, Moon-Jun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.48 no.5
    • /
    • pp.709-719
    • /
    • 2000
  • Background : The different features of high-resolution CT(HRCT) findings of active pulmonary tuberculosis(TB) were studied between acid fast bacilli(AFB) smear or culture positive and negative group. Methods : We prospectively evaluated 36 patients who had been confirmed for active pulmonary tuberculosis by the smear or culture of AFB in sputum(n=25), and changes on serial chest radiographs(n=11). The patients were divided into 3 groups by the results of sputum AFB stain and culture. Group 1(n= 11) is negative in both AFB stain and culture; group 2(n=13) is negative in AFB stain but positive in culture ; and group 3(n=12) is positive in both AFB stain and culture. We evaluated the findings of HRCT in each group randomly. Result : On the HRCT scans, acinar nodule(100%), macronodule(75%), and cavity(75%) in group 3 were more frequently found than group 1(63%. 18%, 9%) and group 2(46%, 15%, 23%)(p<0.05). The centrilobular nodule and branching structure were more frequently observed in group 3(92%) than in group 1(54%)(p<0.05), but were similarly observed in group 2(77%)(p>0.05). AFB positive group was statistically different than the negative group in the HRCT findings with to acinar nodule(100% vs 54%), macronodule(75% vs 17%), and cavity(75% vs 17%)(p<0.05). TB culture positive group was statistically different than the negative group in the HRCT findings with respect to acinar nodule(72% vs 45%) and cavity(48% vs 9%)(p<0.05). Conclusions : HRCT scans are helpful in determining disease acitivity in sputum AFB stain-negative pulmonary tuberculosis. When HRCT shows centrilobular nodule and branching structure, acinar nodule, macronodule, cavity, further studies as sputum induction and bronchoscopy can be performed to determine the presence of bacilli in patients of AFB stain-negative tuberculosis.

  • PDF