• Title/Summary/Keyword: High resolution satellite data

Search Result 697, Processing Time 0.03 seconds

A Study on Feature Extraction Using High-Resolution Satellite Image Data (고해상도 위성 영상데이터를 이용한 지형요소 추출에 관한 연구)

  • 김상철;신석효;안기원;이건기;서두천
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.181-185
    • /
    • 2003
  • Recently, in accordance with supplying high-resolution satellite images which as IKONOS, KVR-1000, and Quick Bird, the use of satellite images have increased in the study which extraction of features from high-resolution satellite images is becoming a new research focus. In this study, using generally involves such as image segmentation, filtering and sobel operator and thinning in image processing for extraction of feature from satellite image. We apply this method to extraction of feature which need to the revision of map from high-resolution IKONOS satellite image data, we verified the capability of extraction of feature and application using satellite image and proposed a plan for the study in the future.

  • PDF

Matching Performance Analysis of Upsampled Satellite Image and GCP Chip for Establishing Automatic Precision Sensor Orientation for High-Resolution Satellite Images

  • Hyeon-Gyeong Choi;Sung-Joo Yoon;Sunghyeon Kim;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.103-114
    • /
    • 2024
  • The escalating demands for high-resolution satellite imagery necessitate the dissemination of geospatial data with superior accuracy.Achieving precise positioning is imperative for mitigating geometric distortions inherent in high-resolution satellite imagery. However, maintaining sub-pixel level accuracy poses significant challenges within the current technological landscape. This research introduces an approach wherein upsampling is employed on both the satellite image and ground control points (GCPs) chip, facilitating the establishment of a high-resolution satellite image precision sensor orientation. The ensuing analysis entails a comprehensive comparison of matching performance. To evaluate the proposed methodology, the Compact Advanced Satellite 500-1 (CAS500-1), boasting a resolution of 0.5 m, serves as the high-resolution satellite image. Correspondingly, GCP chips with resolutions of 0.25 m and 0.5 m are utilized for the South Korean and North Korean regions, respectively. Results from the experiment reveal that concurrent upsampling of satellite imagery and GCP chips enhances matching performance by up to 50% in comparison to the original resolution. Furthermore, the position error only improved with 2x upsampling. However,with 3x upsampling, the position error tended to increase. This study affirms that meticulous upsampling of high-resolution satellite imagery and GCP chips can yield sub-pixel-level positioning accuracy, thereby advancing the state-of-the-art in the field.

The Application of Orbital Modeling and Rational Function Model for Ground Coordinate from High Resolution Satellite Data (고해상도 인공위성데이터로부터 지상좌표 결정을 위한 궤도모델링 및 RFM기법 적용)

  • Seo, Doo-Chun;Yang, Ji-Yeon;Lee, Dong-Han;Im, Hyo-Suk
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.187-195
    • /
    • 2008
  • Generation of accurate ground coordinates from high resolution satellite image are becoming increasingly of interest. The primary focus of this paper is to compute satellite direct sensor model (DSM) and rational function model (RFM) for accurate generation of ground coordinates from high resolution satellite images. Being based on this we presented an algorithm to be able to efficiently ground coordinates about large area with introducing RFM(rational function model) method applied to rigorous sensor modeling standing on basis of satellite orbit dynamics and collinearity equation, and sensor modeling of high-resolution satellite data like IKONOS, QuickBird, KOMPSAT-2 and others. The general high resolution satellite measures the position, velocity and attitude data of satellite using star, gyro, and GPS sensors.

  • PDF

DEVELOPMENT OF HIGH-RESOLUTION SATELLITE IMAGE PROCESSING SYSTEM BY USING CBD

  • Yoon, Chang-Pak;Seo, Ji-Hoon;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.49-52
    • /
    • 2002
  • High-resolution satellite image processing software should be able to ensure accurate, fast, compact data processing in offline or online environment. In this paper, component software for high-resolution satellite image processing is developed using OpenGIS components and real-time data processing architecture. The developed component software is composed of three major packages, which are data provide package, user interface package, and fast data processing package. The data provider package encodes and decodes diverse image/vector data formats and give identical data access methods to developers. The user interface package supports menus, toolbars, dialogs, and events to use easier. The fast data processing package follows the OpenGIS's data processing standards, which can deal with several processors as components with standard procedural functionalities.

  • PDF

Development of the forest type classification technique for the mixed forest with coniferous and broad-leaved species using the high resolution satellite data

  • Sasakawa, Hiroshi;Tsuyuki, Satoshi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.467-469
    • /
    • 2003
  • This research aimed to develop forest type classification technique for the mixed forest with coniferous and broad-leaved species using the high resolution satellite data. QuickBird data was used as satellite data. The method of this research was to extract satellite data for every single tree crown using image segmentation technique, then to evaluate the accuracy of classification by changing grouping criteria such as tree species, families, coniferous or broad-leaved species, and timber prices. As a result, the classification of tree species and families level was inaccurate, on the other hand, coniferous or broad-leaved species and timber price level was high accurate.

  • PDF

Analysis for Accuracy of High Resolution Satellite Data Using Simulation data (시뮬레이션 자료를 이용한 고해상도 인공위성자료의 정확도 분석)

  • Seo Doo-Chun;Lee Dong-Han;Park Su-Young;Song Jeong-Heon;Lim Hyo-Suk
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.255-258
    • /
    • 2006
  • With the increasing availability of high-resolution satellite imagery, the demand for ortho-rectified products will also be growing. High-resolution of the imagery (up to 1m) the desired accuracy of the ortho-rectification is more sensitive to a number of factors. including satellite position, velocity, internal sensor error (specifically, misalignment. lens distortion, etc.). sensor modeling, relief displacement and matching error, etc. The main objective of this study is to analysis the accuracy of high resolution satellite data using simulation data.

  • PDF

A Study of on the Forest Map Update Using Orthorecified High Resolution Satellite Imagery Data (고해상도 정사위성영상을 이용한 임상도 수정에 관한 연구)

  • 성천경;조정호
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.571-577
    • /
    • 2004
  • The operational availability of multispactal high-resolution satellite imagery, opens up new possibilities for updating forest stand map. Compared with information acquired by traditional methods (Panchromatic Aerial Photo), these data offer a number of advantages, In this study used 1m resolution and 4 band multispectral, which are capability to update forest map of kind of tree. Therefore, high-resolution satellite imagery is good method for updating forest map in the future.

  • PDF

Image Data Processing System for Satellite

  • Park Jong-Euk;Kong Jong-Pil;Heo Haeng-Pal;Kim Young Sun;Youn Heong-Sik;Paik Hong Yul
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.486-488
    • /
    • 2004
  • The SRI (Super Resolution Imager) uses the CCD (Charge coupled device) detector that is used to convert the light into electronic data. The purpose of the SRI is to obtain data for high resolution images by converting incoming light into digital stream of pixel data. The SRI has a high resolution, so this electronic system needs more fast imaging data processing, detector control and data transmission systems. This report describes the required system specification and manufactured electronic system for satellite.

  • PDF

CCSDS 122.0-B-1 : An Image Compression Technology for High Resolution Satellites (CCSDS 122.0-B-1 : 고해상도위성의 영상압축 기술)

  • Seo, Seok-Bae;Koo, In-Hoi
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.2
    • /
    • pp.90-98
    • /
    • 2008
  • In recent, image data compression method of high resolution satellite image is the important issue for its application and development. The CCSDS (Consultative Committee for Space Data Systems) published a standard for the high resolution image data compression, CCSDS 122.0-B-1, in the end of 2005, which is expected to be widely applied in process of compression for the high resolution satellite images. In this paper, it is explained that the current trends of image compression methods for high resolution satellites, and then the comparison results between CCSDS 122.0-B-1 standard and JPEG are described.

  • PDF

A Study on the Ceneration of Simulated High-Resolution Satellite Images (고해상도 모의위성영상 제작에 관한 연구)

  • 윤영보;조우석;박종현;이종훈
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.6
    • /
    • pp.327-336
    • /
    • 2002
  • Ever since high resolution satellites were launched, high-resolution satellite images have been utilized in many areas. This paper proposed methods of generating simulated satellite image using DEM(Digital Elevation Model) and digital image such as aerial photograph. There are two methods proposed in the paper: one is Direct-Indirect method and the other Indirect-Indirect, method. It is assumed that satellite attitude is not changing and perspective center is moving in the direction of flight while image is captured. The proposed methods were implemented with aerial photograph, DEM data, arbitrary orbit parameters and attitude parameters of high resolution satellite image under generation. Furthermore, for the stereo viewing, different orientation parameters and perspective center were tested for generating simulated satellite image. In addition, the quality and accuracy of the simulated satellite image generated by the proposed methods were analyzed.