• Title/Summary/Keyword: High resolution exposure

Search Result 142, Processing Time 0.021 seconds

Effect of exposure energy dose on lateral resolution and flexural strength of three-dimensionally printed dental zirconia

  • Kyle Radomski;Yun-Hee Lee;Sang J Lee;Hyung-In Yoon
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.5
    • /
    • pp.248-258
    • /
    • 2023
  • PURPOSE. This study aims to evaluate the effects of exposure energy on the lateral resolution and mechanical strength of dental zirconia manufactured using digital light processing (DLP). MATERIALS AND METHODS. A zirconia suspension and a custom top-down DLP printer were used for in-office manufacturing. The viscosity of the suspension and uniformity of the exposed light intensity were controlled. Based on the exposure energy dose delivered to each layer, the specimens were classified into three groups: low-energy (LE), medium-energy (ME), and high-energy (HE). For each energy group, a simplified molar cube was used to measure the widths of the outline (Xo and Yo) and isthmus (Xi and Yi), and a bar-shaped specimen of the sintered body was tested. A Kruskal-Wallis test for the lateral resolution and one-way analysis of variance for the mechanical strength were performed (α = .05). RESULTS. The zirconia green bodies of the ME group showed better lateral resolution than those of the LE and HE groups (both P < .001). Regarding the flexural strength of the sintered bodies, the ME group had the highest mean value, whereas the LE group had the lowest mean value (both P < .05). The ME group exhibited fewer agglomerates than the LE group, with no distinctive interlayer pores or surface defects. CONCLUSION. Based on these findings, the lateral resolution of the green body and flexural strength of the sintered body of dental zirconia could be affected by the exposure energy dose during DLP. The exposure energy should be optimized when fabricating DLP-based dental zirconia.

Super Resolution Reconstruction from Multiple Exposure Images (노출이 다른 다수의 입력 영상을 사용한 초해상도 영상 복원)

  • Lee, Tae-Hyoung;Ha, Ho-Gun;Lee, Cheol-Hee;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.1
    • /
    • pp.73-80
    • /
    • 2012
  • Recent research efforts have focused on combining high dynamic range imaging with super-resolution reconstruction to enhance both the intensity range and resolution of images. The processes developed to date start with a set of multiple-exposure input images with low dynamic range (LDR) and low resolution (LR), and require several procedural steps: conversion from LDR to HDR, SR reconstruction, and tone mapping. Input images captured with irregular exposure steps have an impact on the quality of the output images from this process. In this paper, we present a simplified framework to replace the separate procedures of previous methods that is also robust to different sets of input images. The proposed method first calculates weight maps to determine the best visible parts of the input images. The weight maps are then applied directly to SR reconstruction, and the best visible parts for the dark and highlighted areas of each input image are preserved without LDR-to-HDR conversion, resulting in high dynamic range. A new luminance control factor (LCF) is used during SR reconstruction to adjust the luminance of input images captured during irregular exposure steps and ensure acceptable luminance of the resulting output images. Experimental results show that the proposed method produces SR images of HDR quality with luminance compensation.

Development of X-ray PIV System Using a Medical X-ray Tube (임상용 X-선관을 이용한 X-ray PIV시스템의 개발)

  • Yim, Dae-Hyun;Kim, Guk-Bae;Kim, Do-Il;Lee, Hyong-Koo;Lee, Sang-Joon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.403-406
    • /
    • 2006
  • A new medical X-ray PIV technique was developed using a conventional medical X-ray tube. To acquire images of micro-scale particles, the X-ray PIV system consists of an x-ray CCD camera with high spatial resolution, and a X-ray tube with small a focal spot. A new X-ray exposure control device was developed using a rotating disc shutter to make double pulses which are essential for PIV application. Synchronization methodology was also developed to apply the PIV technique to a conventional medical X-ray tube. In order to check the performance and usefulness of the developed X-ray PIV technique, it was applied to a glycerin flow in an opaque silicon tube. Tungsten particles which have high X-ray absorption coefficient were used as tracer particles. Through this preliminary test, the spatial resolution was found to be higher than ultrafast MRI techniques, and the temporal resolution was higher than conventional X-ray PIV techniques. By improving its performance further and developing more suitable tracers, this medical X-ray PIV technique will have strong potential in the fields of medical imaging or nondestructive inspection as well as diagnosis of practical thermo-fluid flows.

  • PDF

GAN-Based Local Lightness-Aware Enhancement Network for Underexposed Images

  • Chen, Yong;Huang, Meiyong;Liu, Huanlin;Zhang, Jinliang;Shao, Kaixin
    • Journal of Information Processing Systems
    • /
    • v.18 no.4
    • /
    • pp.575-586
    • /
    • 2022
  • Uneven light in real-world causes visual degradation for underexposed regions. For these regions, insufficient consideration during enhancement procedure will result in over-/under-exposure, loss of details and color distortion. Confronting such challenges, an unsupervised low-light image enhancement network is proposed in this paper based on the guidance of the unpaired low-/normal-light images. The key components in our network include super-resolution module (SRM), a GAN-based low-light image enhancement network (LLIEN), and denoising-scaling module (DSM). The SRM improves the resolution of the low-light input images before illumination enhancement. Such design philosophy improves the effectiveness of texture details preservation by operating in high-resolution space. Subsequently, local lightness attention module in LLIEN effectively distinguishes unevenly illuminated areas and puts emphasis on low-light areas, ensuring the spatial consistency of illumination for locally underexposed images. Then, multiple discriminators, i.e., global discriminator, local region discriminator, and color discriminator performs assessment from different perspectives to avoid over-/under-exposure and color distortion, which guides the network to generate images that in line with human aesthetic perception. Finally, the DSM performs noise removal and obtains high-quality enhanced images. Both qualitative and quantitative experiments demonstrate that our approach achieves favorable results, which indicates its superior capacity on illumination and texture details restoration.

Feasibility study on realization of high resolution solid immersion lensbased near-field microscopy by use of an annular aperture (광학 필터를 사용한 고해상 고체침지 렌즈 기반 근접장 현미경 적용 가능성에 대한 연구)

  • Moon, H.B.;Yoon, Y.J.;Kim, T.S.;Park, Y.P.;Park, N.C.;Park, K.S.
    • Transactions of the Society of Information Storage Systems
    • /
    • v.6 no.2
    • /
    • pp.79-82
    • /
    • 2010
  • In optical imaging systems, such as microscopes, high resolution exposure systems, and optical storage devices, higher optical resolution is a requirement. One of the promising technologies that is able to satisfy this requirement with relatively simple construction and reliable performance are, solid immersion lens (SIL)-based near-field (NF) optical systems. High NA optical systems using annular apertures have been investigated as one solution to achieve higher resolutions and an extended focal depth. By applying an optimized annular aperture to convention SIL optical head resolution can be increased by approximately 20%. This novel SIL-based near-field optics will be verified through experiments such as measuring focused beam spot profiles and observing the topology of a measurement sample. The studied SIL-based near-field optics can be applicable to not only next generation optical storage device but also high resolution microscopy and pattering technologies.

Evaluation of the Spatial Resolution for Exposure Class in Computed Radiography by Using the Modulation Transfer Function (변조전달함수를 이용한 컴퓨터 방사선영상의 감도 노출 분류에 따른 공간분해능 평가)

  • Seoung, Youl-Hun
    • Journal of Digital Convergence
    • /
    • v.11 no.8
    • /
    • pp.273-279
    • /
    • 2013
  • The purpose of the study was to present basic data to evaluation of the spatial resolution for exposure class(EC) in computed radiography(CR) by using the modulation transfer function(MTF). In this study, MTF was measured the edge method by using image plate(IP) of $100{\mu}mm$ pixels. A standard beam quality RQA5 based on an international electro-technical commission(IEC) standard was used to perform the X-ray imaging studies. Digital imaging began to set the sensitivity to EC 50, 100, 200, 300, 400, 600, 800, 1200 in X-ray irradiated to IP. The MTF 50% and 10% in the final images was analysis by using an authorized image analysis program the Origin 8.0 and the image J. As a results, the EC 200 was the best spatial resolution at MTF 50% ($1.979{\pm}0.114lp/mm$) and MTF 10% ($3.932{\pm}0.041$). Therefore, the EC 200 could be useful for the diagnosis of diseases that require high spatial resolution such as fractures.

Development of Single-Frame PIV Velocity Field Measurement Technique Using a High Resolution CCD Camera (고해상도 CCD카메라를 이용한 Single-Frame PIV 속도장 측정기법 개발)

  • Lee, Sang-Joon;Shin, Dae-Sig
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.21-28
    • /
    • 2000
  • Although commercial PIV systems have been widely used for the non-intrusive velocity field measurement of fluid flows, they are still under development and have considerable room for improvement. In this study, a single-frame double-exposure PIV system using a high-resolution CCD camera was developed. A pulsed Nd:Yag laser and high-resolution CCD camera were synchronized by a home-made control circuit. In order to resolve the directional ambiguity problem encountered in the single-frame PIV technique, the second particle image was genuinely shifted in the CCD sensor array during the time interval dt. The velocity vector field was determined by calculating the displacement vector at each interrogation window using cross-correlation with 50% overlapping. In order to check the effect of spatial resolution of CCD camera on the accuracy of PIV velocity field measurement, the developed PIV system with three different resolution modes of the CCD camera (512 ${\times}$ 512, lK ${\times}$ IK, 2K ${\times}$ 2K) was applied to a turbulent flow which simulate the Zn plating process of a steel strip. The experimental model consists of a snout and a moving belt. Aluminum flakes about $1{\mu}m$ diameter were used as scattering particles for the liquid flow in the zinc pot and the gas flow above the zinc surface was seeded with atomized olive oil with an average diameter of 1-$3{\mu}m$. Velocity field measurements were carried out at the strip speed $V_s$=1.0 m/s. The 2K ${\times}$ 2K high-resolution PIV technique was significantly superior compared to the smaller pixel resolution PIV system. For the cases of 512 ${\times}$ 512 and 1K ${\times}$ 1K pixel resolution PIV system, it was difficult to get accurate flow structure of viscous flow near the wall and small vortex structure in the region of large velocity gradient.

Acquisition of Subcentimeter GSD Images Using UAV and Analysis of Visual Resolution (UAV를 이용한 Subcentimeter GSD 영상의 취득 및 시각적 해상도 분석)

  • Han, Soohee;Hong, Chang-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.563-572
    • /
    • 2017
  • The purpose of the study is to investigate the effect of flight height, flight speed, exposure time of camera shutter and autofocusing on the visual resolution of the image in order to obtain ultra-high resolution images with a GSD less than 1cm. It is also aimed to evaluate the ease of recognition of various types of aerial targets. For this purpose, we measured the visual resolution using a 7952*5304 pixel 35mm CMOS sensor and a 55mm prime lens at 20m intervals from 20m to 120m above ground. As a result, with automatic focusing, the visual resolution is measured 1.1~1.6 times as the theoretical GSD, and without automatic focusing, 1.5~3.5 times. Next, the camera was shot at 80m above ground at a constant flight speed of 5m/s, while reducing the exposure time by 1/2 from 1/60sec to 1/2000sec. Assuming that blur is allowed within 1 pixel, the visual resolution is 1.3~1.5 times larger than the theoretical GSD when the exposure time is kept within the longest exposure time, and 1.4~3.0 times larger when it is not kept. If the aerial targets are printed on A4 paper and they are shot within 80m above ground, the encoded targets can be recognized automatically by commercial software, and various types of general targets and coded ones can be manually recognized with ease.

EXPERIMENTAL STUDY ON QUANTITATIVE EVALUATION OF FILM-BASED DIGITAL IMAGING SYSTEM (방사선사진용 디지털 영상시스템의 정량적 평가에 관한 실험적 연구)

  • Cho Heang-Hee;Kim Eun-Kyung
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.24 no.1
    • /
    • pp.137-147
    • /
    • 1994
  • A digital imaging system using Machintosh Ⅱ ci computer, high resolution Sony XC-77 CCD camera, Quickcapture Frame Grabber Board was evaluated for quantitative analysis of standardized periapical film with aluminum step wedge. The results were as follows: 1. Correlation between Al thickness and gray level was high-positively associated(r²=0.99, p<0.001). 2. Correlation between measured weight of experimental lesion and estimated relative lesion volume by digital subtracted radiography was also high-positively associated (r²=0.98, p<0.001). 3. As exposure time was increased, mean gray level was decreased(p<0.01) and slope of regression line between Al thickness and gray level was also decreased (p<0.01). And when the exposure time was shorter than 0.2 second, the value of r² was relatively low. On the basis of the above results, it is considered that this digital imaging system using a Macintosh Ⅱ ci computer & a high resolution CCD monochrome camera will be useful in evaluating digitized image from standardized periapical film quantitatively.

  • PDF

The Mechanical and Cryogenic Design of IGRINS

  • Park, Chan;Lee, Sung-Ho
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.154.1-154.1
    • /
    • 2011
  • IGRINS (Immersion Grating Infrared Spectrometer) is a cross-dispersed high resolution near-infrared spectrograph whose primary disperser is a silicon immersion grating (SIG) and cross-dispersers are two volume phase holographic gratings (VPHG). IGRINS covers the full ranges of H and K astronomical wavelength bands at a single exposure with the spectral resolution of 40,000. The overall layout of the IGRINS Cryostat is a $960{\times}600{\times}380$ cubic millimeter rectangular box and the whole optical train is sitting on an $880{\times}520{\times}50\;mm^3$ rectangular Optical Bench. The total volume of the instrument has been revolutionarily reduced and remained compact for the spectral coverage and sensitivity of a high resolution spectrograph in infrared. We, in this presentation, introduce the design models, the structural and thermal analysis results of the mechanics and cryogenics of IGRINS.

  • PDF