• Title/Summary/Keyword: High reliability network

Search Result 491, Processing Time 0.024 seconds

Mobility Support Scheme Based on Machine Learning in Industrial Wireless Sensor Network (산업용 무선 센서 네트워크에서의 기계학습 기반 이동성 지원 방안)

  • Kim, Sangdae;Kim, Cheonyong;Cho, Hyunchong;Jung, Kwansoo;Oh, Seungmin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.11
    • /
    • pp.256-264
    • /
    • 2020
  • Industrial Wireless Sensor Networks (IWSNs) is exploited to achieve various objectives such as improving productivity and reducing cost in the diversity of industrial application, and it has requirements such as low-delay and high reliability packet transmission. To accomplish the requirement, the network manager performs graph construction and resource allocation about network topology, and determines the transmission cycle and path of each node in advance. However, this network management scheme cannot treat mobile devices that cause continuous topology changes because graph reconstruction and resource reallocation should be performed as network topology changes. That is, despite the growing need of mobile devices in many industries, existing scheme cannot adequately respond to path failure caused by movement of mobile device and packet loss in the process of path recovery. To solve this problem, a network management scheme is required to prevent packet loss caused by mobile devices. Thus, we analyse the location and movement cycle of mobile devices over time using machine learning for predicting the mobility pattern. In the proposed scheme, the network manager could prevent the problems caused by mobile devices through performing graph construction and resource allocation for the predicted network topology based on the movement pattern. Performance evaluation results show a prediction rate of about 86% compared with actual movement pattern, and a higher packet delivery ratio and a lower resource share compared to existing scheme.

Experimental Design of AODV Routing Protocol with Maximum Life Time (최대 수명을 갖는 AODV 라우팅 프로토콜 실험 설계)

  • Kim, Yong-Gil;Moon, Kyung-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.3
    • /
    • pp.29-45
    • /
    • 2017
  • Ad hoc sensor network is characterized by decentralized structure and ad hoc deployment. Sensor networks have all basic features of ad hoc network except different degrees such as lower mobility and more stringent energy requirements. Existing protocols provide different tradeoffs among some desirable characteristics such as fault tolerance, distributed computation, robustness, scalability and reliability. wireless protocols suggested so far are very limited, generally focusing on communication to a single base station or on aggregating sensor data. The main reason having such restrictions is due to maximum lifetime to maintain network activities. The network lifetime is an important design metric in ad hoc networks. Since every node does a router role, it is not possible for other nodes to communicate with each other if some nodes do not work due to energy lack. In this paper, we suggest an experimental ad-hoc on-demand distance vector routing protocol to optimize the communication of energy of the network nodes.The load distribution avoids the choice of exhausted nodes at the route selection phase, thus balances the use of energy among nodes and maximizing the network lifetime. In transmission control phase, there is a balance between the choice of a high transmission power that lead to increase in the range of signal transmission thus reducing the number of hops and lower power levels that reduces the interference on the expense of network connectivity.

5G Network Resource Allocation and Traffic Prediction based on DDPG and Federated Learning (DDPG 및 연합학습 기반 5G 네트워크 자원 할당과 트래픽 예측)

  • Seok-Woo Park;Oh-Sung Lee;In-Ho Ra
    • Smart Media Journal
    • /
    • v.13 no.4
    • /
    • pp.33-48
    • /
    • 2024
  • With the advent of 5G, characterized by Enhanced Mobile Broadband (eMBB), Ultra-Reliable Low Latency Communications (URLLC), and Massive Machine Type Communications (mMTC), efficient network management and service provision are becoming increasingly critical. This paper proposes a novel approach to address key challenges of 5G networks, namely ultra-high speed, ultra-low latency, and ultra-reliability, while dynamically optimizing network slicing and resource allocation using machine learning (ML) and deep learning (DL) techniques. The proposed methodology utilizes prediction models for network traffic and resource allocation, and employs Federated Learning (FL) techniques to simultaneously optimize network bandwidth, latency, and enhance privacy and security. Specifically, this paper extensively covers the implementation methods of various algorithms and models such as Random Forest and LSTM, thereby presenting methodologies for the automation and intelligence of 5G network operations. Finally, the performance enhancement effects achievable by applying ML and DL to 5G networks are validated through performance evaluation and analysis, and solutions for network slicing and resource management optimization are proposed for various industrial applications.

Development of a simulation method for the subsea production system

  • Woo, Jong Hun;Nam, Jong Ho;Ko, Kwang Hee
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.3
    • /
    • pp.173-186
    • /
    • 2014
  • The failure of a subsea production plant could induce fatal hazards and enormous loss to human lives, environments, and properties. Thus, for securing integrated design safety, core source technologies include subsea system integration that has high safety and reliability and a technique for the subsea flow assurance of subsea production plant and subsea pipeline network fluids. The evaluation of subsea flow assurance needs to be performed considering the performance of a subsea production plant, reservoir production characteristics, and the flow characteristics of multiphase fluids. A subsea production plant is installed in the deep sea, and thus is exposed to a high-pressure/ low-temperature environment. Accordingly, hydrates could be formed inside a subsea production plant or within a subsea pipeline network. These hydrates could induce serious damages by blocking the flow of subsea fluids. In this study, a simulation technology, which can visualize the system configuration of subsea production processes and can simulate stable flow of fluids, was introduced. Most existing subsea simulations have performed the analysis of dynamic behaviors for the installation of subsea facilities or the flow analysis of multiphase flow within pipes. The above studies occupy extensive research areas of the subsea field. In this study, with the goal of simulating the configuration of an entire deep sea production system compared to existing studies, a DES-based simulation technology, which can logically simulate oil production processes in the deep sea, was analyzed, and an implementation example of a simplified case was introduced.

A Study on Standardization of Data Bus for Modular Small Satellite (모듈화 소형위성의 Data Bus 표준화 방안 연구)

  • Jang, Yun-Uk;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.6
    • /
    • pp.620-628
    • /
    • 2010
  • Small satellites can be used for various space research and scientific or educational purposes due to advantages in small size, low-cost, and rapid development. Small Satellites have many advantages of application to Responsive Space. Compared to traditional larger satellites, however, Small satellites have many constraints due to limitations in size. Therefore, it is difficult to expect high performance. To approach maximum capability with minimal size, weight, and cost, standard modular platform of Small satellites is necessary. Modularity supports plug-and-play architecture. The result is Small satellites that can be combined quickly and reliably using plug-and-play mechanisms. For communication between modules, standard bus interface is needed. Controller Area Network(CAN) protocol is considered optimum data bus for modular Small satellite. CAN can be applied to data communication with high reliability. Hence, design optimization and simplification can also be expected. For ease of assembly and integration, modular design can be considered. This paper proposes development method for standardized modular Small satellites, and describes design of data interface based on CAN and a method of testing for modularity.

Energy-aware Reed-Solomon Scheme for Improving Data Reliability in Solar-powered Wireless Sensor Networks (태양 에너지 기반 무선 센서 네트워크의 데이터 신뢰성 향상을 위한 에너지 적응형 Reed-Solomon 기법)

  • Jung, Jongwug;Kang, Minjae;Noh, Dong Kun;Cho, Sang Hoon
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.2
    • /
    • pp.122-127
    • /
    • 2017
  • The data link layer operates reliable internode communication in the OSI reference model. Generally, the forward error correction (FEC) method is used in the data link layer of the wireless sensor network (WSN) environment that has a high frequency of errors. However, the FEC method consumes a significant amount of energy due to its high error correction rate, which negatively affects the networks' lifespan. In contrast with battery-based technology, energy is regularly recharged in the solar-powered WSN to meet higher energy needs than required for basic operation of existing nodes. By efficiently utilizing this surplus energy, the proposed energy-aware FEC method can reduce the data loss rate with no decrement of the network lifetime. The method employs a trade-off relationship between the energy and data loss rate by adjusting the parity length in the FEC method to the energy state in each node. The performance of the proposed scheme was verified through a simulation.

Optimization Algorithm for Energy-aware Routing in Networks with Bundled Links (번들 링크를 가진 네트워크에서 에너지 인식 라우팅을 위한 최적화 알고리즘)

  • Jang, Kil-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.4
    • /
    • pp.572-580
    • /
    • 2021
  • In order to reduce transmission delay and increase reliability in networks, mainly high-performance and high-power network equipment is used to guarantee network quality. In this paper, we propose an optimization algorithm to minimize the energy consumed when transmitting traffic in networks with a bundle link composed of multiple physical cables. The proposed optimization algorithm is a meta-heuristic method, which uses tabu search algorithm. In addition, it is designed to minimize transmission energy by minimizing the cables on the paths of the source and destination nodes for each traffic. In the proposed optimization algorithm, performance evaluation was performed in terms of the number of cables used in the transmission and the link utilization for all traffic on networks, and the performance evaluation result confirmed the superior performance than the previously proposed method.

The Difference of Invariance, Reliability of The Student Engagement Scale (ESE) In Distance-Learning During Covid-19 Pandemic in Light of Some Students' Characteristics

  • Almaleki, Deyab A.;Alzahrani, Abdulrahman J.;Alkhairi, Mohammed A.;Albalawi, Farhan A.;Albogami, Hosin A.;Alhajory, Easa S.;Readi, Wadea A.;Idrees, Mohammed A.;Alshamrani, Saleh M.;Alwusaidi, Osama A.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.8
    • /
    • pp.7-14
    • /
    • 2022
  • This study aimed to test the factor structure of the measure of student participation in distance education. The study population consisted of all teachers in public education and faculty members in higher education in the Kingdom of Saudi Arabia by applying it to a sample of bachelor's and graduate students at the college of Education at umm al-Qura University. The (ESE) was applied to a random sample representing the study population consisting of (216) respondents. The results of the study showed that the scale consists of three main factors, with showed a high degree of construct validity through fit indices of the confirmatory factor analysis. The results have shown a gradual consistency of the measure's invariance that reaches the high level of the Measurement Invariance across the gender and study groups variables.

Method of Generating Information Signals in the System Industrial Internet of Things

  • Aleksandr Serkov;Nina Kuchuk;Bogdan Lazurenko;Alla Horiuskina
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.206-210
    • /
    • 2024
  • Industrial facilities that use modern IT technologies require the ensured reliability and security of information in automated enterprise management. Concurrently, so as to ensure a high quality of communication, it is necessary to expand the bandwidth of communication channels, which are limited by the physical parameters of the radio frequency spectrum. In order to overcome this contradiction, we propose the application of technology fundamental to ultra-wideband signals, in which the ratio between the bandwidth and its central part is greater than "one". For this reason, the information signal is emitted without a carrier frequency - simultaneously within the entire frequency band - provided that the signal level is lower than the noise level. For the transmission of information content, the method of positional-time coding is used, in which each information bit is encoded by hundreds of ultrashort pulses that arrive within a certain sequence. Mathematical models of signals and values observed in wireless communication systems with autocorrelation reception of modulated ultra-wideband signals are furthermore recommended. These assist in identifying features of the dependence of the error probability on the normalized signal-to-noise ratio and the signal base. Comparative analysis has shown that the best noise immunity of the systems considered in this paper is the communication system, which uses the time separation of the reference and information signals. During the first half of the bit interval, the switch closes the output of the transmitter directly to the generator of the ultra-wideband signal - forming a reference signal. In the middle of the bit interval, the switch alternates the output to one of two possible positions depending on the encoding signal - "zero" or "one", forming the information part of the ultra-wideband signal. It should also be noted that systems with autocorrelation reception and separate transmission of reference and information signals, provide a high level of structural signal secrecy. Furthermore, they provide the reliable transmission of digital information, especially in interference conditions.

A Synchronized Scheme Applying on Hybrid in On-Line Game (온라인 게임에서의 하이브리드기법을 적용한 동기화 기법)

  • Kime, Hye-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.2
    • /
    • pp.7-12
    • /
    • 2011
  • Because development of high speed network, spread of internet, and high quality of computer performance, request and internet about massive multiplayer playing the game, is increasing. In order to experience realistic game play which is one of the most importance factor in massive multiplayer on-line, synchronization is importance matter. We propose synchronized and optimized scheme that combined FSM (Finite State Machine) and event holding method for efficient state synchronization for massive multiplayer on-line, and we show the effectiveness and reliability of our proposed scheme through the implementing and testing of the game server applying on our proposed scheme.