• 제목/요약/키워드: High redshift galaxies

검색결과 129건 처리시간 0.041초

High redshift galaxy clusters and superclusters in ELAIS-N1

  • Hyun, Minhee;Im, Myungshin;Kim, Jae-Woo;Lee, Seong-Kook;Edge, Alastair C.
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.79.3-80
    • /
    • 2015
  • Galaxy overdensities such as galaxy clusters and superclusters are the largest gravitationally bound systems in the Universe. Since they contain many different levels of local densities, they are excellent places to test galaxy evolution models in connection to the environments. The environment studies of galaxies at z ~ 1 are important because the environmental quenching seems to be an important mechanism to reduce star formation activities in galaxies at z < 1. However, there have been not many studies about high redshift galaxy clusters at z ~ 1 because of the lack of wide and deep multi-wavelength data. We have used the multi-wavelength data from the UKIDSS DXS (J and K band), the SWIRE (4 IRAC bands), and the PAN-STARRS (g, r, i, z, y bands) in the ELAIS-N1 field. We identified galaxy cluster candidates at 0.2 < z < 1.6 using the multi-wavelength data. We found several superclusters where cluster candidates are concentrated on few tens of Mpc scale. Interestingly, some of the supercluster candidates consist of galaxy clusters which have high blue galaxy. We will present high redshift galaxy cluster and supercluster candidates in ELAIS-N1 field and galaxy properties in different environments including dense clusters and fields.

  • PDF

Spectroscopic observation of the massive high-z (z=1.48) galaxy cluster SPT-CL J2040-4451 using Gemini Multi-Object Spectrographs

  • Kim, Jinhyub;Jee, Myungkook J.;Kim, Seojin F.;Ko, Jongwan
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.74.2-74.2
    • /
    • 2019
  • Mass measurement of high-redshift galaxy clusters with high accuracy is important in constraining cosmological parameters. Extremely massive clusters at high redshift may impose a serious tension with the current ΛCDM paradigm. SPT-CL J2040-4451 at z=1.48 is considered one such case given its redshift and mass estimate inferred from the SZ data. The system has also been confirmed to be indeed massive from a recent weak-lensing (WL) analysis. Comparison of the WL mass with the spectroscopic result may provide invaluable information on the dynamical stage of the system. However, the existing spectroscopic coverage of the cluster is extremely poor; only 6 blue star-forming galaxies have been found within the virial radius, which results in highly inflated and biased velocity dispersion. In this work, we present a spectroscopic analysis of the member candidates using Gemini Multi-Object Spectrographs (GMOS) observation in Gemini South. The observation was designed to find early-type member galaxies within the virial radius and to obtain reliable velocity dispersion. We explain our selection scheme and preliminary results of the spectra. We also compare the dynamical mass estimate inferred from the velocity dispersion with the WL mass.

  • PDF

Catching a growing giant: Discovery of a galaxy cluster in formation

  • Lee, Seong-Kook;Im, Myungshin;Park, Bomi;Hyun, Minhee;Paek, Insu
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.33.3-34
    • /
    • 2021
  • In LCDM universe, large, massive structures, like galaxy clusters, grow through the successive accretion/mergers of smaller structures. Therefore, at high redshift, unlike local, it is expected that there would be plenty of galaxy clusters which are still growing. Here, we report the discovery of a high-redshift (z~1) galaxy cluster which is in its active formation stage. This cluster is well connected to the large scale overdense environment and contains high fraction of star-forming galaxies, providing a good example supporting our previously suggested 'Web-feeding model'.

  • PDF

Chemically young AGNs at high redshift

  • Shin, Jaejin;Woo, Jong-Hak;Nagao, Tohru
    • 천문학회보
    • /
    • 제42권1호
    • /
    • pp.49.3-50
    • /
    • 2017
  • Metallicity is one of the most important properties in understanding galaxy evolution. However, measuring metallicity is limited to low redshift (z<3.5) due to the faintness of the metallicity indicators in normal galaxies. For high redshift universe, active galactic nuclei (AGN) can be used to constrain the host galaxy metallicity. Previous studies investigated AGN metallicity using emission line flux ratios (i.e., NV/CIV and FeII/MgII), finding no evolution up to z~6. Those results might be due to selection effect since previous studies are based on very luminous AGNs. The observed luminosity-metallicity relation of AGNs (e.g., Nagao et al. 2006) suggests that luminous AGNs may be already matured at the observed epoch. Considering the luminosity-metallicty relation, we focused on low luminosity AGNs to find young AGNs (i.e., low metallicity). Through the Gemini/GNIRS observation in 2012A and 2015A (K-GMT GN-2015A-Q-203 PI: Shin, J.), we obtained the Gemini/GNIRS data for 7 high redshift AGNs (3.0

  • PDF

AKARI OBSERVATIONS OF DUSTY TORI OF ACTIVE GALACTIC NUCLEI

  • Oyabu, Shinki;Kaneda, Hidehiro;Izuhara, Masaya;Tomita, Keisuke;Ishihara, Daisuke;Kawara, Kimiaki;Matsuoka, Yoshiki
    • 천문학논총
    • /
    • 제32권1호
    • /
    • pp.157-161
    • /
    • 2017
  • The dusty torus of Active Galactic Nuclei (AGNs) is one of the important components for the unification theory of AGNs. The geometry and properties of the dusty torus are key factors in understanding the nature of AGNs as well as the formation and evolution of AGNs. However, they are still under discussion. Infrared observation is useful for understanding the dusty torus as thermal emission from hot dust with the dust sublimation temperature (~ 1500 K) has been observed in the infrared. We have analyzed infrared spectroscopic data of low-redshift and high-redshift quasars, which are luminous AGNs. For the low-redshift quasars, we constructed the spectral energy distributions (SEDs) with AKARI near-infrared and Spitzer mid-infrared spectra and decomposed the SEDs into a power-law component from the nuclei, silicate features, and blackbody components with different temperatures from the dusty torus. From the decomposition, the temperature of the innermost dusty torus shows the range between 900-2000 K. For the high-redshift quasars, AKARI traced rest-frame optical and near-infrared spectra of AGNs. Combining with WISE data, we have found that the temperature of the innermost dusty torus in high redshift quasars is lower than that in typical quasars. The hydrogen $H{\alpha}$ emission line from the braod emission line region in the quasars also shows narrow full width at half maximum of $3000-4000km\;s^{-1}$. These results indicate that the dusty torus and the broad emission line region are more extended than those of typical quasars.

THE AKARI DEEP FIELD SOUTH: PUSHING TO HIGH REDSHIFT

  • Clements, David L.
    • 천문학논총
    • /
    • 제32권1호
    • /
    • pp.275-279
    • /
    • 2017
  • The AKARI Deep Field South (ADF-S) is a large extragalactic survey field that is covered by multiple instruments, from optical to far-IR and radio. I summarise recent results in this and related fields prompted by the release of the Herschel far-IR/submm images, including studies of cold dust in nearby galaxies, the identification of strongly lensed distant galaxies, and the use of colour selection to find candidate very high redshift sources. I conclude that the potential for significant new results from the ADF-S is very great. The addition of new wavelength bands in the future, eg. from Euclid, SKA, ALMA and elsewhere, will boost the importance of this field still further.

From Brown Dwarfs to Gamma Ray Bursts at High Redshift: Overview of Current CEOU Activities

  • 임명신
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.55.2-55.2
    • /
    • 2011
  • We present the current research activities of the Center for the Exploration of the Origin of the Universe, a center established at Seoul National University with the Creative Research Initiative program. Our activities focus on observational studies of distant objects such as gamma-ray bursts, quasars, and proto-cluster of galaxies, but we also carry out other observational and theoretical studies in related topics. We also developed a new instrument, Camera for Quasars at Early Universe (CQUEAN) in collaboration with Kyunghee University group, and have secured observing facilities such as UKIRT and McDonald 2.1m observatory. Our research highlights include results such as the discovery of high redshift quasars and gamma ray bursts, the discovery of tidal disruption event at z=0.38 and peculiar gamma ray burst events, analysis of proto-clusters of galaxies, the discovery of brown dwarfs, and development of CQUEAN and its usage at the McDonald observatory.

  • PDF

SECULAR EVOLUTION OF SPIRAL GALAXIES

  • ZHANG XIAOLEI
    • 천문학회지
    • /
    • 제36권3호
    • /
    • pp.223-239
    • /
    • 2003
  • It is now a well established fact that galaxies undergo significant morphological transformation during their lifetimes, manifesting as an evolution along the Hubble sequence from the late to the early Hubble types. The physical processes commonly believed to be responsible for this observed evolution trend, i.e. the major and minor mergers, as well as gas accretion under a barred potential, though demonstrated applicability to selected types of galaxies, on the whole have failed to reproduce the most important statistical and internal properties of galaxies. The secular evolution mechanism reviewed in this paper has the potential to overcome most of the known difficulties of the existing theories to provide a natural and coherent explanation of the properties of present day as well as high-redshift galaxies.

Merging Features and Optical-NIR Color Gradient of Early-type Galaxies

  • 김두호;임명신
    • 천문학회보
    • /
    • 제36권1호
    • /
    • pp.57.1-57.1
    • /
    • 2011
  • It has been suggested that merging plays an important role in the formation and the evolution of early-type galaxies (ETGs). Optical-NIR color gradients of ETGs in high density environments are found to be less steep than those of ETGs in low density environments, hinting frequent merger activities in ETGs in high density environments. In order to examine if the flat color gradients are the result of dry mergers, we studied the relations between merging features, color gradient, and environments of 281 low redshift ETGs selected from Sloan Digital Sky Survey (SDSS) Stripe82. The sample contains 222 relaxed ETGs, 38 ETGs with tidal features, 10 galaxies with dust features and 11 galaxies with tidal and dust features, and Near Infrared (NIR) images are taken from UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS). We find that r-K color gradients of field sample galaxies are steeper than those of sample ETGs within cluster environments. For the field sample galaxies, a relatively large number of galaxies with peculiar features contribute to the steeper color gradients, while the absence of these peculiar early-type galaxies make color gradients of the cluster sample galaxies intact. In high density environment, ETGs are already evolved and relaxed, resulting flat color gradients. However, in low density environments, a majority of ETGs undergone merging recently which makes the color gradients steep.

  • PDF