• Title/Summary/Keyword: High rate sputtering

Search Result 210, Processing Time 0.028 seconds

Constructional Characteristics and Propagation Conditions on ZnO Films by Sputtering (스퍼터링에 의한 산화아연박막의 구조적 특성 및 전파경계조건)

  • Lee, Dong-Yoon
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.807-809
    • /
    • 2009
  • Thin film deposition methods have been widely used and intensively investigated because high quality crystalline films enable to fabricate by sputtering. Especially rf magnetron sputtering deposition has advantages of being employ a relatively high deposition rate and also to achieve high crystalline films in low pressure because plasma density around target by magnetic is high. To apply ZnO thin film for SAW filter, it has highly flat surface, excellent c-axis preferred orientation and high resistivity value. As-deposited ZnO films showed the strong c-axis growth and excellent crystallinity. C-axis preferred orientation, resistivity and surface roughness highly depended on oxygen/argon gas ratio.

  • PDF

Unbalanced Magnetron Sputtering 장치에 의해 Magnet Field 변화에 따른 ITO 박막의 특성

  • Ji, Seung-Hun;Bae, Gang;Son, Seon-Yeong;Park, Seung-Hwan;Kim, Jong-Jae;Kim, Hwa-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.141-141
    • /
    • 2009
  • 본 실험에서는 비평형 마그네트론 스퍼터링 (Unbalanced Magnetron Sputtering, UBMS)을 이용하여 제작된 ITO 박막의 전기적, 광학적, 구조적인 특성들에서 기판온도와 자장 변화의 영향에 대해 연구하였다.

  • PDF

Characteristics of Nickel Oxide Thin Film Manufactured by Reactive Magnetron Sputtering Method (반응성 마그네트론 스퍼터링법에 의한 Nickel Oxide 박막 제작 특성에 관한 연구)

  • Kim, Gi-Bum;Hwang, Yun-Sik;Kim, Yeung-Shik;Park, Jang-Sick
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.1
    • /
    • pp.29-34
    • /
    • 2008
  • In this paper, the DE(double erosion) cathode for the reactive magnetron sputtering system is developed for high deposition rate and high target utilization efficiency. The utilization efficiency of the developed DE cathode is 22% higher than that of normal SE(single erosion) cathode. Sputtering process for the nickel oxide thin films with the DE cathode is performed under the following conditions; power with $1kW{\sim}3kW$, pressure with 4mtorr and 8mtorr, oxygen flow ratio with $0%{\sim}80%$. As a result, the hysteresis phenomenon of discharge voltage in 4mtorr is lower than that in 8mtorr and the hysteresis phenomenon of discharge voltage is getting lower as the applied power is getting higher. The structure of cross section and surface roughness of the thin films are observed by FE-SEM and AFM. The structure of cross section of the thin films is columnar and the average surface roughness under oxygen flow ratio of 0%, 52.5% and 65.0% are $2.08{\AA}$, $2.20{\AA}$ and $0.854{\AA}$, respectively.

  • PDF

Characterization of the Vanadium Alloy Thin Films Coated by Sputtering (스퍼터링을 이용한 바나듐 합금 박막화에 관한 연구)

  • Yoon, Yongho;Jung, Jihoon
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.598-605
    • /
    • 2016
  • V-Cr-Y alloy is a material for hydrogen separation membrane possessing high transmittance and selectivity. In order to increase the rate of hydrogen permeation flux through the membrane, V-Cr-Y thin film was prepared using a sputtering technique and was investigated focusing on its basic properties. Thin film was deposited on a silicon wafer using a target including V (89.8%), Cr (10.0%) and Y(0.2%), and results of EDS analysis confirm that the ratio of metal in thin film agrees with that in the target. Higher sputtering temperature and power resulted in more rapid growth rate of the thin film and larger size of the crystals, and denser and finer crystal structure was observed when lower pressure was applied. An optimal sputtering condition was found with RF, 2mTorr, 300W and ambient temperature, and a suitable V-Cr-Y thin film for hydrogen separation was obtained upon heat treatment of the thin film prepared in this way.

Growth of O- and Zn-polar ZnO films by DC magnetron sputtering

  • Yoo, Jin-Yeop;Choi, Sung-Kuk;Jung, Soo-Hoon;Cho, Young-Ji;Lee, Sang-Tae;Kil, Gyung-Suk;Lee, Hyun-Jae;Yao, Takafumi;Chang, Ji-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.1
    • /
    • pp.1-4
    • /
    • 2012
  • O- and Zn-polar ZnO films were grown by DC magnetron sputtering. Growth of high-quality, single-crystal ZnO thin films were confirmed by XRD and pole figure analysis. O-polar ZnO was grown on an $Al_2O_3$ substrate, which was confirmed by a slow growth rate (378 nm/hr), a fast etching rate (59 nm/min), and by the hillocks on the surface after etching. Zn-polar ZnO was grown on a GaN/$Al_2O_3$ substrate, which was confirmed by a fast growth rate (550 nm/hr), a slow etching rate (28 nm/min), and by pits on the surface after etching. Results from the present study show that it is possible to use DC-sputtering to grow ZnO film with the same polarity as other epitaxial growth methods.

New Approaches for Overcoming Current Issues of Plasma Sputtering Process During Organic-electronics Device Fabrication: Plasma Damage Free and Room Temperature Process for High Quality Metal Oxide Thin Film

  • Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.100-101
    • /
    • 2012
  • The plasma damage free and room temperature processedthin film deposition technology is essential for realization of various next generation organic microelectronic devices such as flexible AMOLED display, flexible OLED lighting, and organic photovoltaic cells because characteristics of fragile organic materials in the plasma process and low glass transition temperatures (Tg) of polymer substrate. In case of directly deposition of metal oxide thin films (including transparent conductive oxide (TCO) and amorphous oxide semiconductor (AOS)) on the organic layers, plasma damages against to the organic materials is fatal. This damage is believed to be originated mainly from high energy energetic particles during the sputtering process such as negative oxygen ions, reflected neutrals by reflection of plasma background gas at the target surface, sputtered atoms, bulk plasma ions, and secondary electrons. To solve this problem, we developed the NBAS (Neutral Beam Assisted Sputtering) process as a plasma damage free and room temperature processed sputtering technology. As a result, electro-optical properties of NBAS processed ITO thin film showed resistivity of $4.0{\times}10^{-4}{\Omega}{\cdot}m$ and high transmittance (>90% at 550 nm) with nano- crystalline structure at room temperature process. Furthermore, in the experiment result of directly deposition of TCO top anode on the inverted structure OLED cell, it is verified that NBAS TCO deposition process does not damages to the underlying organic layers. In case of deposition of transparent conductive oxide (TCO) thin film on the plastic polymer substrate, the room temperature processed sputtering coating of high quality TCO thin film is required. During the sputtering process with higher density plasma, the energetic particles contribute self supplying of activation & crystallization energy without any additional heating and post-annealing and forminga high quality TCO thin film. However, negative oxygen ions which generated from sputteringtarget surface by electron attachment are accelerated to high energy by induced cathode self-bias. Thus the high energy negative oxygen ions can lead to critical physical bombardment damages to forming oxide thin film and this effect does not recover in room temperature process without post thermal annealing. To salve the inherent limitation of plasma sputtering, we have been developed the Magnetic Field Shielded Sputtering (MFSS) process as the high quality oxide thin film deposition process at room temperature. The MFSS process is effectively eliminate or suppress the negative oxygen ions bombardment damage by the plasma limiter which composed permanent magnet array. As a result, electro-optical properties of MFSS processed ITO thin film (resistivity $3.9{\times}10^{-4}{\Omega}{\cdot}cm$, transmittance 95% at 550 nm) have approachedthose of a high temperature DC magnetron sputtering (DMS) ITO thin film were. Also, AOS (a-IGZO) TFTs fabricated by MFSS process without higher temperature post annealing showed very comparable electrical performance with those by DMS process with $400^{\circ}C$ post annealing. They are important to note that the bombardment of a negative oxygen ion which is accelerated by dc self-bias during rf sputtering could degrade the electrical performance of ITO electrodes and a-IGZO TFTs. Finally, we found that reduction of damage from the high energy negative oxygen ions bombardment drives improvement of crystalline structure in the ITO thin film and suppression of the sub-gab states in a-IGZO semiconductor thin film. For realization of organic flexible electronic devices based on plastic substrates, gas barrier coatings are required to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency flexible AMOLEDs needs an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}gm^{-2}day^{-1}$. The key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required (under ${\sim}10^{-6}gm^{-2}day^{-1}$) is the suppression of nano-sized defect sites and gas diffusion pathways among the grain boundaries. For formation of high quality single inorganic gas barrier layer, we developed high density nano-structured Al2O3 single gas barrier layer usinga NBAS process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nano- crystalline phase with various grain sizes in a single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the NBAS processed $Al_2O_3$ gas barrier film have improved order of magnitude compared with that of conventional $Al_2O_3$ layers made by the RF magnetron sputteringprocess under the same sputtering conditions; the WVTR of the NBAS processed $Al_2O_3$ gas barrier film was about $5{\times}10^{-6}g/m^2/day$ by just single layer.

  • PDF

The DC magnetron sputtering vacuum deposition of indium tin oxide thin film (ITO 박막의 DC 마그네트론 스퍼터링 진공 증착)

  • Hur, Chang-Wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.4
    • /
    • pp.935-938
    • /
    • 2010
  • Indium-tin-oxide (ITO) films show a low electrical resistance and high transmittance in the visible range of an optical spectrum. The transparent electrodes have to get resistivity and sheet resistance less than $1{\times}10^{-3}{\Omega}/cm$ and $10^3{\Omega}/sq$ respectively and transmittance over 80% at wavelength of 380nm~780nm. This study establishes DC magnetron sputtering process condition on ITO thin film by measuring electrical and optical properties of the thin film. As results, we obtained $300\;{\mu}{\Omega}cm$ resistivity of ITO films with good transmittance (above 90 %) under 90:10 wt% composition rate of $In_2O_3:SnO_2$. Also, we understood that the ITO thin film by DC magnetron sputtering depends on the deposition condition, especially substrate temperature, and the composition rate of $In_2O_3:SnO_2$ that is one of the most critical parameters was successfully optimized for high qualified transparent electrodes.

Effect of Sputtering Power on the Change of Total Interfacial Trap States of SiZnSnO Thin Film Transistor

  • Ko, Kyung-Min;Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.6
    • /
    • pp.328-332
    • /
    • 2014
  • Thin film transistors (TFTs) with an amorphous silicon zinc tin oxide (a-2SZTO) channel layer have been fabricated using an RF magnetron sputtering system. The effect of the change of excitation electron on the variation of the total interfacial trap states of a-2SZTO systems was investigated depending on sputtering power, since the interfacial state could be changed by changing sputtering power. It is well known that Si can effectively reduce the generation of the oxygen vacancies. However, The a-2SZTO systems of ZTO doped with 2 wt% Si could be degraded because the Si peripheral electron belonging to a p-orbital affects the amorphous zinc tin oxide (a-ZTO) TFTs of the s-orbital overlap structure. We fabricated amorphous 2 wt% Si-doped ZnSnO (a-2SZTO) TFTs using an RF magnetron sputtering system. The a-2SZTO TFTs show an improvement of the electrical property with increasing power. The a-2SZTO TFTs fabricated at a power of 30 W showed many of the total interfacial trap states. The a-2SZTO TFTs at a power of 30 W showed poor electrical property. However, at 50 W power, the total interfacial trap states showed improvement. In addition, the improved total interfacial states affected the thermal stress of a-2SZTO TFTs. Therefore, a-2SZTO TFTs fabricated at 50 W power showed a relatively small shift of threshold voltage. Similarly, the activation energy of a-2SZTO TFTs fabricated at 50 W power exhibits a relatively large falling rate (0.0475 eV/V) with a relatively high activation energy, which means that the a-2SZTO TFTs fabricated at 50 W power has a relatively lower trap density than other power cases. As a result, the electrical characteristics of a-2SZTO TFTs fabricated at a sputtering power of 50 W are enhanced. The TFTs fabricated by rf sputter should be carefully optimized to provide better stability for a-2SZTO in terms of the sputtering power, which is closely related to the interfacial trap states.

Modulated Pulse Power Sputtering Technology for Deposition of Al Doped ZnO Thin Film (Al doped ZnO 박막 증착을 위한 모듈레이티드 펄스 스퍼터링)

  • Yang, Won-Kyun;Joo, Jung-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.2
    • /
    • pp.53-60
    • /
    • 2012
  • Modulated Pulse Power (MPP) magnetron sputtering is a new high-power pulsed magnetron sputtering (HPPMS) technology which overcomes the low deposition rate problem by modulating the pulse voltage shape, amplitude, and the duration. Highly ionized magnetron sputtering can be performed without arcing because it can be controlled as multiple steps of micro pulses within one overall pulse period in the range of 500-3,000 ${\mu}s$. In this study, the various waveforms of discharge voltage and current for micro pulse sets of MPP were investigated to find the possibility of controlling the strongly ionized plasma mode. Enhanced ionization of the sputtered metal atoms was obtained by OES. Large grained columnar structure can be grown by the strongly ionized plasma mode in the AZO deposition using MPP. In the most highly ionized deposition condition, the preferred orientation of (002) plane decreased, and the resistivity, therefore, increased by the plasma damage.

Dielectric Characteristics of $Al_2O_3$ Thin Films Deposited by Reactive Sputtering

  • Park, Jae-Hoon;Park, Joo-Dong;Oh, Tae-Sung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.100-100
    • /
    • 2000
  • Aluminium oxide (Al2O3) films have been investigated for many applications such as insulating materials, hard coatings, and diffusion barriers due to their attractive electrical and mechanical properties. In recent years, application of Al2O3 films for dielectric materials in integrated circuits as gates and capacitors has attracted much attention. Various deposition techniques such as sol-gel, metalorganic decomposition (MOD), sputtering, evaporation, metalorganic chemical vapor deposition (MOCVD), and pulsed laser ablation have been used to fabricate Al2O3 thin films. Among these techniques, reactive sputtering has been widely used due to its high deposition rate and easy control of film composition. It has been also reported that the sputtered Al2O3 films exhibit superior chemical stability and mechanical strength compared to the films fabricated by other processes. In this study, Al2O3 thin films were deposited on Pt/Ti/SiO/Si2 and Si substrates by DC reactive sputtering at room temperature with variation of the Ar/O2 ratio in sputtering ambient. Crystalline phase of the reactively sputtered films was characterized using X-ray diffractometry and the surface morphology of the films was observed with Scanning election microscopy. Effects of Th Ar/O2 ratio characteristics of Al2O3 films were investigated with emphasis on the thickness dependence of the dielectric properties. Correlation between the dielectric properties and the microstructure was also studied

  • PDF