• 제목/요약/키워드: High rate sputtering

검색결과 210건 처리시간 0.011초

Simulation and Characteristic Measurement with Sputtering Conditions of Triode Magnetron Sputter

  • Kim, Hyun-Hoo;Lim, Kee-Joe
    • Transactions on Electrical and Electronic Materials
    • /
    • 제5권1호
    • /
    • pp.11-14
    • /
    • 2004
  • An rf triode magnetron sputtering system is designed and installed its construction in vacuum chamber. In order to calibrate the rf triode magnetron sputtering for thin films deposition processes, the effects of different glow discharge conditions were investigated in terms of the deposition rate measurements. The basic parameters for calibrating experiment in this sputtering system are rf power input, gas pressure, plasma current, and target-to-substrate distance. Because a knowledge of the deposition rate is necessary to control film thickness and to evaluate optimal conditions which are an important consideration in preparing better thin films, the deposition rates of copper as a testing material under the various sputtering conditions are investigated. Furthermore, a triode sputtering system designed in our team is simulated by the SIMION program. As a result, it is sure that the simulation of electron trajectories in the sputtering system is confined directly above the target surface by the force of E${\times}$B field. Finally, some teats with the above 4 different sputtering conditions demonstrate that the deposition rate of rf triode magnetron sputtering is relatively higher than that of the conventional sputtering system. This means that the higher deposition rate is probably caused by a high ion density in the triode and magnetron system. The erosion area of target surface bombarded by Ar ion is sputtered widely on the whole target except on both magnet sides. Therefore, the designed rf triode magnetron sputtering is a powerful deposition system.

고속 스퍼터링 소스를 이용한 구리 후막 제조 및 특성 평가 (Characteristics of Cu Thick Films Deposited by High Rate Magnetron Sputtering Source)

  • 정재인;양지훈
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2008년도 추계학술대회 초록집
    • /
    • pp.13-14
    • /
    • 2008
  • A high rate magnetron sputtering source (HRMSS) was employed to deposit thick copper films. The HRMSS was manufactured by changing the magnet size, arrangement, and field intensity. For the preparation of thick copper films, the copper sputtering conditions using HRMSS were characterized based on the deposition parameters such as discharge characteristics, I-V characteristics of the source, and change of deposition rate. The deposition rate of copper turned out to be more than 5 times than that of conventional magnetron sputtering source. Thick copper films having thickness of more than $20{\mu}m$ were prepared by using HRMSS. The morphology and orientation of the films were investigated by scanning electron microscopy and x-ray diffraction.

  • PDF

Sputtering Technique of Magnesium Oxide Thin Film for Plasma Display Panel Applications

  • Choi Young-Wook;Kim Jee-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권1호
    • /
    • pp.110-113
    • /
    • 2006
  • A high rate deposition sputtering process of magnesium oxide thin film in oxide mode has been developed using a 20 kW unipolar pulsed power supply. The power supply was operated at a maximum constant voltage of 500 V and a constant current of 40 A. The pulse repetition rate and the duty were changed in the ranges of $10\sim50$ kHz and $10\sim60%$, respectively. The deposition rate increased with rising incident power to the target. Maximum incident power to the magnesium target was obtained by the control of frequency, duty and current. The deposition rate of a moving state was 9 nm m/min at the average power of 1.5 kW. This result shows higher deposition rate than any other previous work involving reactive sputtering in oxide mode. The thickness uniformities over the entire substrate area of $982mm{\times}563mm$ were observed at the processing pressure of $2.8\sim9.5$ mTorr. The thickness distribution was improved at lower pressure. This technique is proposed for application to a high through-put sputtering system for plasma display panels.

Triode magnetron sputtering system의 제작 및 특성평가 (Characteristic evaluations and production of triode magnetron sputtering system)

  • 김현후;이무영;김광태;윤상현;유환구;김종민;박철현;임기조
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.2
    • /
    • pp.787-790
    • /
    • 2003
  • A rf triode magnetron sputtering system is designed and installed its construction in vacuum chamber. In order to calibrate the rf triode magnetron sputtering for thin films deposition processes, the effects of different glow discharge conditions were investigated in terms of the deposition rate measurements. The basic parameters for calibrating experiment in this sputtering system are rf power input, gas pressure, plasma current, and target-to-substrate distance. Because a knowledge of the deposition rate is necessary to control film thickness and to evaluate optimal conditions which are an important consideration in preparing better thin films, the deposition rates of copper as a testing material under the various sputtering conditions are investigated. Furthermore, a triode sputtering system designed in our team is simulated by the SIMION program. As a result, it is sure that the simulation of electron trajectories in the sputtering system is confined directly above the target surface by the force of $E{\times}B$ field. Finally, some teats with the above 4 different sputtering conditions demonstrate that the deposition rate of rf triode magnetron sputtering is relatively higher than that of the conventional sputtering system. This means that the higher deposition rate is probably caused by a high ion density in the triode and magnetron system. The erosion area of target surface bombarded by Ar ion is sputtered widely on the whole target except on both magnet sides. Therefore, the designed rf triode magnetron sputtering is a powerful deposition system.

  • PDF

직류 마그네트론 스퍼터링 공정 중 타겟 오염에 따른 박막 및 계면 형성 특성 (Interlayer Formation During the Reactive DC Magnetron Sputtering Process)

  • 이진영;허민;이재옥;강우석
    • 반도체디스플레이기술학회지
    • /
    • 제18권1호
    • /
    • pp.1-4
    • /
    • 2019
  • Reactive sputtering is widely used because of its high deposition rate and high step coverage. The deposition layer is often affected by target poisoning because the target conditions are changed, as well, by reactive gases during the initial stage of sputtering process. The reactive gas affects the deposition rate and process stability (target poisoning), and it also leads unintended oxide interlayer formation. Although the target poisoning mechanism has been well known, little attention has been paid on understanding the interlayer formation during the reactive sputtering. In this research, we studied the interlayer formation during the reactive sputtering. A DC magnetron sputtering process is carried out to deposit an aluminum oxide film on a silicon wafer. From the real-time process monitoring and material analysis, the target poisoning phenomena changes the reactive gas balance at the initial stage, and affects the interlayer formation during the reactive sputtering process.

Plasma Display Panel용 산화마그네슘 박막의 산화영역에서의 스퍼터 성막기술 (A sputtering technique of magnesium oxide thin film in oxide mode for plasma display panel)

  • 최영욱;김지현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 C
    • /
    • pp.1874-1875
    • /
    • 2004
  • A high rate deposition sputtering process of magnesium oxide thin film in oxide mode has been developed using a 20 kW unipolar pulsed power supply. The powersupply was operated at a maximum constant voltage of 500 V and a constant current of 40 A. The pulse repetition rate and the duty were changed in the ranges of 10 ${\sim}$ 50 kHz and 10 ${\sim}$ 60 %, respectively. The deposition rate increased with increasing incident power to the target. Maximum incident power to the magnesium target was obtained by the control of frequency, duty and current. The deposition rate of a moving state was 9 nm m/min at the average power of 1.5 kW. This technique is proposed to apply high through-put sputtering system for plasma display panel.

  • PDF

High rate deposition of poly-si thin films using new magnetron sputtering source

  • Boo, Jin-Hyo;Park, Heon-Kyu;Nam, Kyung-Hoon;Han, Jeon-Geon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2000년도 제18회 학술발표회 논문개요집
    • /
    • pp.186-186
    • /
    • 2000
  • After LeComber et al. reported the first amorphous hydrogenated silicon (a-Si: H) TFT, many laboratories started the development of an active matrix LCDs using a-Si:H TFTs formed on glass substrate. With increasing the display area and pixel density of TFT-LCD, however, high mobility TFTs are required for pixel driver of TF-LCD in order to shorten the charging time of the pixel electrodes. The most important of these drawbacks is a-Si's electron mobiliy, which is the speed at which electrons can move through each transistor. The problem of low carier mobility for the a-Si:H TFTs can be overcome by introducing polycrystalline silicon (poly-Si) thin film instead of a-Si:H as a semiconductor layer of TFTs. Therefore, poly-Si has gained increasing interest and has been investigated by many researchers. Recnetly, fabrication of such poly-Si TFT-LCD panels with VGA pixel size and monolithic drivers has been reported, . Especially, fabricating poly-Si TFTs at a temperature mach lower than the strain point of glass is needed in order to have high mobility TFTs on large-size glass substrate, and the monolithic drivers will reduce the cost of TFT-LCDs. The conventional methods to fabricate poly-Si films are low pressure chemical vapor deposition (LPCVD0 as well as solid phase crystallization (SPC), pulsed rapid thermal annealing(PRTA), and eximer laser annealing (ELA). However, these methods have some disadvantages such as high deposition temperature over $600^{\circ}C$, small grain size (<50nm), poor crystallinity, and high grain boundary states. Therefore the low temperature and large area processes using a cheap glass substrate are impossible because of high temperature process. In this study, therefore, we have deposited poly-Si thin films on si(100) and glass substrates at growth temperature of below 40$0^{\circ}C$ using newly developed high rate magnetron sputtering method. To improve the sputtering yield and the growth rate, a high power (10~30 W/cm2) sputtering source with unbalanced magnetron and Si ion extraction grid was designed and constructed based on the results of computer simulation. The maximum deposition rate could be reached to be 0.35$\mu$m/min due to a high ion bombardment. This is 5 times higher than that of conventional sputtering method, and the sputtering yield was also increased up to 80%. The best film was obtained on Si(100) using Si ion extraction grid under 9.0$\times$10-3Torr of working pressure and 11 W/cm2 of the target power density. The electron mobility of the poly-si film grown on Si(100) at 40$0^{\circ}C$ with ion extraction grid shows 96 cm2/V sec. During sputtering, moreover, the characteristics of si source were also analyzed with in situ Langmuir probe method and optical emission spectroscopy.

  • PDF

DC Magnetron Sputtering에 의한 ATO 박막의 제조 (I)증착특성 (Preparation of ATO Thin Films by DC Magnetron Sputtering (I) Deposition Characteristics)

  • 윤천;이혜용;정윤중
    • 한국세라믹학회지
    • /
    • 제33권4호
    • /
    • pp.441-447
    • /
    • 1996
  • Sb doped SnO2(ATO:Antinomy doped Tin Oxide) thin films were prepared by a DC magnetron spttuering method using oxide target and the deposition characteristics were investigated. The experimental conditions are as follows :Ar flow rate : 100 sccm oxygen flow rates ; 0-100 sccm deposition temperature ; 250 -40$0^{\circ}C$ DC sputter powder ; 150~550 W and sputtering pressure ; ; 2~7 mTorr. Deposition rate greatly depends not on the deposition temperature but on the reaction pressure oxygen flow rate and sputter power,. when the sputter powder is low ATO thin films with (110) preferred orientation are deposited. And when the sputter power is high (110) prefered orientation appeares with decreasing of oxygen flow rate and increasing of suputte-ring pressure.

  • PDF

대향타겟식 스퍼터링 장치의 공정 조건에 따른 SiO2 가스 차단막의 특성 (Characteristics of SiO2 Gas Barrier Films as a Function of Process Conditions in Facing Target Sputtering (FTS) System)

  • 배강;왕태현;손선영;김화민;홍재석
    • 한국전기전자재료학회논문지
    • /
    • 제22권7호
    • /
    • pp.595-601
    • /
    • 2009
  • For the silicon oxide $(SiO_x)$ films prepared by using the facing target sputtering (FTS) apparatus that was manufactured to enhance the preciseness of the fabricated thin-film and sputtering yield rate by forming a higher-density plasma in the electrical discharge space for using it as a thin-film passivation system for flexible organic light emitting devices (FOLEDs). The deposition characteristics were investigated under various process conditions, such as array of the cathode magnets, oxygen concentration$(O_2/Ar+O_2)$ introduced during deposition, and variations of distance between two targets and working pressure. We report that the optimum conditions for our FTS apparatus for the deposition of the $SiO_x$ films are as follows: $d_{TS}\;and\;d_{TT}$ are 90mm and 120mm, respectively and the maximum deposition rate is obtained under a gas pressure of 2 mTorr with an oxygen concentration of 3.3%. Under this optimum conditions, it was found that the $SiO_x$ film was grown with a very high deposition rate of $250{\AA}$/min by rf-power of $4.4W/cm^2$, which was significantly enhanced as compared with a deposition rate (${\sim}55{\AA})$/min) of the conventional sputtering system. We also reported that the FTS system is a suitable method for the high speed and the low temperature deposition, the plasma free deposition, and the mass-production.

RF pulsing이 Ionized Magnetron Sputtering의 이온화율 향상에 미치는 효과 (Effects of RF Pulsing on the Ionization Enhancement in Ionized Magnetron Sputtering)

    • 한국진공학회지
    • /
    • 제7권3호
    • /
    • pp.255-260
    • /
    • 1998
  • Ionized magnetron sputtering은 high density plasma를 사용하여 스퍼터된 입자의 이온화율을 기판에서의 플럭스 기준으로 80%이상까지 증대시킬 수 있는 방법으로 반도체 소자의 아주 작은 홀이나 via contact등을 채울 수 있는 아주 유용한 수단이나 가스의 압력 이 30mTorr 이상으로 상당히 높아야만 이온화율이 높게 유지되어 스퍼터 증착 속도가 느려 지고 중성입자의 각도 분포가 넓어지는 단점이 있다. 그 원인이 스퍼터된 입자들에 의한 전 자 온도의 급격한 감소와 타겟 주변에서의 가스 희귀화 현상에 있다고 보고 이를 보완하고 자 스퍼터 전력을 펄스화 하는 방법을 고안하여 실험하였다. 그 결과 펄스의 on/off time이 10ms/10ms, 100ms/100ms에서 가장 높은 이온화율을 가시광 분광 결과에서 보였으며 실제 로 Ag의 XRD결과 (111)에서 (200)으로 우선 방위의 현격한 변화가 관찰되었다. 이를 고전 력 스퍼터링에 의한 중성 가스 가열과 냉각의 측면에서 해석하였다.

  • PDF