• Title/Summary/Keyword: High rate activated sludge

Search Result 68, Processing Time 0.023 seconds

A Study on the Reduction Process of VOCs Emission from Paint Booth - A Hybrid Process of Biotrickling Filter and Activated Sludge Reactor

  • Lim Gye-Gyu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.E2
    • /
    • pp.41-48
    • /
    • 2005
  • A novel hybrid system composed of a biotrickling filter and an activated sludge reactor was investigated under the conditions of four different SRTs (sludge retention times). The performance of the hybrid reactor was found to be directly comparable among the four different sludge ages. Discernible differences in the removal performance were observed among four different SRTs of 2, 4, 6, and 8 days. High removal efficiency was achieved by continuous circulation of activated sludge over the immobilized mixture culture, which allowed on pH control, addition of nutrients, and removal of paint VOCs (volatile organic compounds). The results also showed that the removal efficiency for a given pollutant depends on the activity of microorganisms based on the SRT. As the SRT increased gradually from 2 to 8 days, the average removal performance decreased. The highest removal rate was achieved at the SRT of 2 days at which the highest OUR (oxygen uptake rate), $6.1mg-O_2/liter-min$ was measured. Biological activity in the recycle microbes decreased to a much lower level, $3.6mg-O_2/liter-min$ at a SRT of 8 days. It is thus believed that young microorganisms were more active and more efficient for the VOCs removal of low concentrations and high flow rates. The apparent correlation of $R^2=0.996$ between the average removal efficiency and the average OUR at each SRTs suggests that VOCs degradation by young cells significantly affected the overall removal efficiency for the tested SRTs.

Degradation of Cyanide by Activated Sludge Immobilized with Polyethylene Glycol (고정화 활성슬러지를 이용한 시안 분해)

  • Cheong, Kyung-Hoon;Choi, Hyung-Il;Kim, Jung-Ae;Moon, Ok-Ran;Kim, Myung-Hee
    • Journal of Environmental Science International
    • /
    • v.17 no.12
    • /
    • pp.1343-1351
    • /
    • 2008
  • The activated sludge obtained from wastewater coke oven plant was immobilized by entrapment with polyethylene glycol (PEG). The effects of several factors on the biodegradation of $CN^-$ from. synthetic wastewater were investigated using batch and continuous reactors. The degradation rate of $CN^-$ increased with increasing of the immobilized bead volume in the reactor. Approximately 7.65mg/L of $NH_4-N$ was produced upon the degradation of 35mg/L of $CN^-$. When high concentrations of the toxic cyanide complex were used in the testing of cyanide degradation, the free activated sludge could be inhibited more than that of the immobilized activated sludge. When the phenol concentration was higher than 400mg/L in the synthetic wastewater, approximately 98.4% of $CN^-$ was removed within 42 hours by the immobilized activated sludge. However, the cyanide was not completely degraded by the tree activated sludge. This indicates that high phenol concentrations can act as a toxic factor for the free activated sludge. A $CN^-$ concentration of less than 1mg/L was achieved by the immobilized sludge at the loading rate of 0.025kg $CN^-/m^3-d$. Moreover, it was found that the HRT should be kept for 48 hours in order to obtain stable treatment conditions.

A Study on the COD Removal in the Paste-board Wastewater by Activated Sludge Process (활성오니법에 의한 판지폐수중의 COD 제거에 관한 연구)

  • 도갑수;김영운
    • Journal of the Korean Professional Engineers Association
    • /
    • v.18 no.3
    • /
    • pp.28-35
    • /
    • 1985
  • As the paper industry consumes much water in process and discharge wastewater containing suspended solid and COD(chemical oxygen demand), relevant law against this discharge has been set up to limit the total containment of COD in discharge. This study has been carried out to improve the treatment method for the soluble COD in wastewater produced during the process of paste-board production, which is made of semichemical pulp and waste paper. Applicated methods are, O$_2$AS : O$_2$ activated sludge process DAS : Deep well activated sludge process SAS : standard activated sludge process and proper combination of DAS and SAS 1) As a result of this experiment, we get the following conclusion between in COD sludge loading "X" and COD removable rate in the process of treating waste-water. COD removable rate(%)=(0.778+0.0146/X)${\times}$100(%)……(7) 2) In case that the COD sludge loading is high, it has been cleared out that the COD removable rate shall become low due to unknown unsoluble substances contained in the process. Meanwhile, to increase the efficiency rate of treatment, it is thought to be necessary, to provide long-time contacts with activated sludge. 3) Once the COD of original waste-water and the target COD of treated water are decided, COD sludge loading is obtained from equation(7), and capacity of aeration tank in the effective systems such as O$_2$AS, DAS, to bet the required COD removable rate can be decided. Therefore the choice among SAS, O$_2$AS, DAS methods is made in consideration of required COD removable rate and allowable installation area. 4) In the sedimentation tank with sludge bulking, it is possible to increase the COD removable rate by 3~7% but still there exist many obstacles to manage this operation.

  • PDF

Biological Toxicity Evaluation of Heavy Metal using Oxygen Uptake Rate on Activated Sludge Process (호흡율 측정에 의한 활성슬러지의 중금속 생물독성평가)

  • Ahn, Woo Jung;Baek, Seung-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.3
    • /
    • pp.279-285
    • /
    • 2007
  • Toxicity evaluations using oxygen uptake rate (OUR) on activated sludge process were investigated. On toxicity evaluations of heavy metals, all toxicants in experiments decreased OUR with respect to the concentrations of the toxicants, while high toxicities with cyanide and mercury were observed respectively. On toxicity evaluations of composite heavy metals, composite toxicities had similar results as to the total sum of each toxicants that presents accurate toxicity evaluation using OUR. From these results, it is concluded that activated sludge is effective indicator for toxicity evaluation on wastewater of biological treatment plants.

Role of Sodium lon in Biodegradation of Nitroaromatic Compound by Activated Sludge and Pure Cultures

  • Jo, Kwan-Hyung
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.3 no.3
    • /
    • pp.169-175
    • /
    • 1999
  • 2,4-Dinitrophenol(DNP) is a metabolic uncoupler that prevents cells from creating energy for growth and it has been suggested that the availability of sodium ions may be important in mitigating the effects of uncouplers. Accordingly, the degradation of DNP was investigated using activated sludge which had been adapted to mineralize DNP. After the acclimation of the activated sludge, the effect of sodium ions on the toxicity of high concentrations(80 to 100mg/L) of DNP was investigated over a sodium ion concentration range of 9.3$\times$10-5 to 94mM. The concentration of sodium ions in the activated sludge mixed liquor seemed to have little effect on the DNP toxicity. However, a lack of sodium in the grwoth media resulted in a reduction of the DNP degradation rate by a bacterial isolate from the activated sludge culture identified as Nocardia asteroides.

  • PDF

Effects of Solubilization Pretreatment of Wastewater Sludge on Anaerobic Digestion (하수슬러지의 혐기성 소화에 미치는 가용화 전처리의 효과)

  • Park, Ki Young;Kim, Dae Young;Chung, Tai Hak
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.1
    • /
    • pp.117-126
    • /
    • 2000
  • Solubilization pretreatments were conducted to enhance the anaerobic digestion of the waste activated sludge. Four pretreatment techniques including heating, sonication freezing and thawing, and enzyme addition were employed to solubilize the waste activated sludge under various conditions. Thermal pretreatment by heating showed the highest efficiency compared with other methods, and freezing and thawing was confirmed as a feasible alternative of solubilization as well as the pretreatment of dewatering. There is a clear correlation between the solubilization efficiency of the waste activated sludge and the gas production. Batch digestion results showed the cumulative gas production as much as four times after thermal pretreatment as compared with that by the control sludge without pretreatment. As a result, hydrolysis or solubilization pretreatment might play a significant role in the high rate digestion of the waste activated sludge.

  • PDF

Effects of Pressure and Dissolved Oxygen Concentration on the Activated Sludge (압력 및 용존산소 농도가 활성슬러지에 미치는 영향)

  • 양병수;신현무
    • Journal of Environmental Science International
    • /
    • v.4 no.3
    • /
    • pp.259-267
    • /
    • 1995
  • This study was conducted to evaluate the effects of pressure and dissolved oxygen concentration on the activated slut비e and to determine the optimum depth of deep shaft process. Some results from this study were summarized as follows. 1. It is considered that low sludge product in the activated sludge system maintaining high dissolved oxygen concentration is attributed to the increase of endogeneous respiration rate caused by the increase of aerobic zone in the sludge floe. 2. The increase of dissolved oxygen concentration does not affect to the increase of organic removal efficiency greatly and therefore the limiting factor is the substrate transfer into the inner part of floe. 3. The yield coefficient, Y is decreased in proportion to the increase of oxygen concentration. In this study, Y values arre ranged from 0.70 to 0.41 according to the variation of dissolved oxygen concentration from 18.0mg/$\ell$ to 258 mg/$\ell$. 4. The optimum depth of deep shaft process should be determined within the limits of non-toxicity to the microorganism and it is about loom in this study.

  • PDF

Effects of Heat Pre-Treatment and Reactor Configurations on the Anaerobic Treatment of Volatile Solids (열전처리와 반응조 형태가 고형 유기물의 혐기성 처리에 미치는 영향)

  • Hong, Young-Soek;Bae, Jae-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.2
    • /
    • pp.104-116
    • /
    • 1996
  • Anaerobic digestion is generally used for the treatment of volatile organic solids such as manure and sludge from waste water treatment plants. However, the reaction rate of anaerobic process is slow, and thus it requires a large reactor volume. To minimize such a disadvantage, physical and chemical pre-treatment is generally considered. Another method to reduce the reactor size is to adopt different reactor system other than CSTR. In this paper, the effects of heat pre-treatment and reactor configurations on the anaerobic treatability of volatile solids was studied. Carrot, kale, primary sludge, and waste activated sludge was chosen as the test materials, and the BMP method was used to evaluate the maximum methane production and first order rate constants from each sample. After the heat treatment at $130^{\circ}C$ for 30min., the measured increase in SCOD per gram VS was up to 394 mg/L for the waste activated sludge. However, the methane production potential per gram VS was increased for only primary and waste activated sludge by 17-23%, remaining the same for carrot and kale. The overall methane production process for the tested solids can be described by first order reactions. The increased in reaction constant after heat pre-treatment was also more significant for the primary and waste activated sludge than that for carrot and kale. therefore, the heat pre-treatment appeared to be effective for the solids with high protein contents rather than for the solids with high carbohydrate contents. Among the four reactor systems studied, CSTR, PFR, CSTR followed by PFR, and PFR with recycle, CSTR followed by PFR appeared to be the best choice considering methane conversion rate and the operational stability.

  • PDF

A Study on the Cu2+ Behavior in Activated Sludge Process (활성슬러지공정에서 구리의 거동에 관한 연구)

  • Park, Jin-Do;Lee, Hak-Sung
    • Journal of Environmental Science International
    • /
    • v.19 no.9
    • /
    • pp.1119-1127
    • /
    • 2010
  • The behavior of copper throughout the whole process of wastewater treatment plant that uses the activated sludge process to treat the wastewater of petrochemical industry that contains low concentration of copper was investigated. Total inflow rate of wastewater that flows into the aeration tank was $697\;m^3$/day with 0.369 mg/L of copper concentration, that is, total copper influx was 257.2 g/day. The ranges of copper concentrations of the influent to the aeration tank and effluent from the one were 0.315 ~ 0.398 mg/L and 0.159 ~ 0.192 mg/L, respectively. The average removal rate of copper in the aeration tank was 50.8 %. The bioconcentration factor (BCF) of copper by microbes in the aeration tank was 3,320. The accumulated removal rate of copper throughout the activated sludge process was 71.3%, showing a high removal ratio by physical and chemical reactions in addition to biosorption by microbes. The concentration of copper in the solid dehydrated by filter press ranged from 74.8 mg/kg to 77.2 mg/kg and the concentration of copper by elution test of waste was 2.690 ~ 2.920 mg/L. It was judged that the copper concentration in dehydrated solid by bioconcentration could be managed with the control of that in the influent.

Removal of Ammonia Nitrogen and Organics from Piggery Wastewater Using BACC Process-I. Comparison of Activated Sludge Process (BACC를 이용한 축산폐수의 암모니아성 질소 및 유기물의 제거 I. 활성슬러지 공정과의 비교)

  • 성기달;류원률;김인환;조무환
    • KSBB Journal
    • /
    • v.16 no.2
    • /
    • pp.133-139
    • /
    • 2001
  • To treat piggery wastewaters containing refractory compounds including nitrogen, biological treatments were investigated. In biological treatment, the removal efficiencies of organics and nitrogen by the activated sludge process and bioreactor using a BACC (Biological Activated Carbon Cartridge) media filled with granular activated carbon were examined. The results were as follows; in the biological process, when the approximate influent BOD concentration of 620 mg/L, through dilution, was treated by the activated sludge process, the process should be operated at a HRT of over 8 days to maintain an effluent BOD concentration of lower than 100 mg/L. In the treatment of piggery wastewater using a BACC bioreactor, when the HRT was 200 hours, the BOD, COD(sub)cr, and TKN removal efficiency of the effluent were 94, 75 and 64.3%, respectively. Comparing the BACC bioreactor with the activated sludge process, when the volumetric loading rate was 0.3 g BOD/L.day, the specific substrate removal rate of BOD was 0.14 g BOD removed/L.day in the activated sludge process which compared with 0.27 g BOD removed/L$.$day in the BACC bioreactor. The BACC bioreactor showed on average a 2-fold higher removal rate and was superior to the activated sludge process in wastewater treatment in terms of variations of loading time and high loading time. Therefore, the BACC process can effectively treat piggery wastewater containing high concentrations of nitrogen and organic compounds.

  • PDF