• 제목/요약/키워드: High pressure tank

검색결과 232건 처리시간 0.024초

Quantifying Energy Consumption to the Level of Service Pressure in Water Distribution Network

  • Marlim, Malvin S.;Choi, Jeongwook;Kang, Doosun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.458-458
    • /
    • 2022
  • It is essential to reduce global carbon emissions, mainly from energy use. The water supply and distribution sector is a vital part of human society and is one of the primary energy consumers. The procurement and distribution of water require electricity to operate the pump to deliver water to users with sufficient pressure. As the water users are spatially distributed over a wide area, the energy required to deliver water to each user differs depending on the corresponding supplying element (reservoir, tank, pipe, pump, and valve). This difference in energy required for each user also comes with a difference in pressure availability which affects the level of service for individual users and the whole network. Typically, there is a disproportion where users close to the source experience excessively high pressure with low energy consumption. In contrast, remote users need more energy to get the minimum pressure. This study proposes the Energy Return Index (ERI) to quantify the pressure return from particular energy consumption to supply water to each node. The disproportionality can be quantified and identified in the network using the proposed ERI. The index can be applied to optimize the network elements such as pump operation and tank location/size to reach a balanced energy consumption with the appropriate level of service.

  • PDF

고압수소 밸브의 시동 특성에 관한 수치적 연구 (A Numerical Study on the Opening Characteristics of High Pressure Hydrogen Valves)

  • 김상민;김진성;조영준;양시원;신문성
    • 한국수소및신에너지학회논문집
    • /
    • 제34권6호
    • /
    • pp.689-697
    • /
    • 2023
  • The high-pressure hydrogen valve is intended to supply hydrogen charged at high pressure in the hydrogen tank to the fuel cell stack, which decompresses high-pressure hydrogen gas to low pressure and primarily limits the excessive flow. It consists of a pilot valve, a main valve, and a excessive flow valve to operate in a wide pressure range from 2 to 70 MPa of charging pressure. The opening characteristics of the valve were confirmed by computation fluid dynamics applying the moving grid technique. The behavior of the valve was predicted by predicting the force acting on the valve over time. In addition, the difference in behavior according to supply pressure was compared.

수압램 시험을 위한 복합재 T-Joint의 파손 압력 예측 (Failure Pressure Prediction of Composite T-Joint for Hydrodynamic Ram Test)

  • 김동건;고은수;김인걸;우경식;김종헌
    • Composites Research
    • /
    • 제29권2호
    • /
    • pp.53-59
    • /
    • 2016
  • 항공기 날개 구조물은 유체를 포함한 연료탱크로 사용되며, 연료탱크와 날개구조물을 연결하는 체결부는 복합재 구조물을 사용한다. 항공기 날개 구조물에 고속의 물체가 관통 또는 폭발하게 되면 수압램 현상이 발생하며, 수압램 현상에 의해 연료탱크에 높은 압력이 생성된다. 이러한 높은 앞력은 날개구조물 뿐만 아니라 연료탱크와 체결부의 파손을 야기하기 때문에 전투용 항공기의 기체 생존성 확보를 위해서는 수압램 효과에 대한 체결부의 거동을 확인해야 한다. 본 연구에서는 수압램 검증 시험에 앞서 항공기의 복합재 날개 외피와 스파 체결부를 모사한 4종류의 복합재 T-Joint에 정적 인장 시험을 수행하여 시편의 파손 거동을 스트레인 게이지와 초고속 카메라를 통해 확인하였다. 스트레인 게이지를 통해 얻은 변형률을 기준으로 동일한 형상과 하중 조건을 갖는 유한요소해석 모델링의 해석 결과를 비교하여 모델링의 타당성을 확인하였으며, 정적 하중에서 복합재 T-Joint의 파손응력을 확인하였다. 유한요소해석을 통해 향후 진행될 수압램 시험에서 각 시편이 파손되는 압력을 예측하였다.

Wind Pressure Transients in the Tunnel inside a Station Caused by a Passing High Speed Train

  • Nahmkeon Hur;Kim, Sa-Ryang;Kim, Wook;Lee, Sangyeul
    • Journal of Mechanical Science and Technology
    • /
    • 제18권9호
    • /
    • pp.1614-1622
    • /
    • 2004
  • When a High Speed Train (HST) passes through a station with no stop, effects of wind pressure transients caused by this passing train have to be considered for the safety of passengers on the platform and for the possible structural safety problems as well. In Gwangmyeong and Daejeon stations of the Korean high speed railroad, tunnels inside stations for the passing train are proposed to reduce the noise and wind pressure transients to the passengers on the platform. In the present study, transient 3-D full Navier-Stokes solutions with moving mesh to implement train movement are obtained and compared with the results obtained by the towing tank experiment. Investigations on flow phenomena for various train speeds and design modifications are also performed.

육상 시추용 머드탱크의 교반성능에 대한 수치해석적 연구 (Numerical Study of Agitation Performance in the Mud Tank of On-shore Drilling)

  • 황종덕;구학근
    • 한국산업융합학회 논문집
    • /
    • 제23권4_2호
    • /
    • pp.617-626
    • /
    • 2020
  • The drilling mud is essentially used in oil and gas development. There are several roles of using the drilling mud, such as cleaning the bottomhole, cooling and lubricating the drill bit and string, transporting the cuttings to the surface, keeping and adjusting the wellbore pressure, and preventing the collapse of the wellbore. The fragments from rocks and micro-sized bubbles generated by the high pressure are mixed in the drilling mud. The systems to separate those mixtures and to keep the uniformly maintained quality of drilling mud are required. In this study, the simulation is conducted to verify the performance of the mud tank's agitation capacity. The primary role of the mud tank is the mixing of mud at the surface with controlling the mud condition. The container type is chosen as a mud tank pursuing efficient transport and better management of equipment. The single- and two-phase simulations about the agitation in the mud tank are performed to analyze and identify the inner flow behavior. The convergence of results is obtained for the vertical- and axis-direction velocity vector fields based on the grid-dependency tests. The mixing time analysis depending on the multiphase flow conditions indicates that the utilization of a two-stepped impeller with a smaller size provides less time for mixing. This study's results are expected to be utilized as the preliminary data to develop the mixing and integrating equipment of the onshore drilling mud system.

액화수소 저장탱크의 수평요동이 증발 특성에 미치는 영향에 대한 연구 (A Study on the Effect of Evaporation of Liquid Hydrogen Tank Related to Horizontal Sinewave)

  • 오승준;권준영;윤정환
    • 한국수소및신에너지학회논문집
    • /
    • 제34권2호
    • /
    • pp.155-161
    • /
    • 2023
  • Recently, a study on alternative and renewable energy is being conducted due to energy depletion and environmental problems. In particular, a hydrogen has the advantage of converting and storing the remaining energy into water-electrolyzed hydrogen through renewable energy generation. In general, due to reasons such as insulation problems, a study on high-pressure hydrogen storage tanks and related parts has recently been conducted. However, in the case of liquid hydrogen, the volume can be reduced by about 800 times or more compared to high-pressure hydrogen gas, so the study on this is needed as a technology that can increase energy density. In this study, the evaporation characteristics were analyzed under fixed heat flux conditions for liquid hydrogen storage tanks and the change in thermal stratification according to sloshing was analyzed. The heat flux condition was fixed at 250 W/m2 and the horizontal resonance frequency of the primary mode was applied to the storage tank. As a result, it was confirmed that the thermal stratification phenomenon decreased compared to the case where the slashing was not present due to forced convection when the slashing was present.

무선센서 네트워크 기술 기반 액화가스 저장탱크 내 잔량 모니터링 시스템 구현 (Implementation of a Residual Quantity Monitoring System in a Liquefied Gas Storage Tank based on Wireless Sensor Network Technology)

  • 김민규;한해진;한재환
    • 센서학회지
    • /
    • 제27권5호
    • /
    • pp.352-356
    • /
    • 2018
  • This paper relates to a technology for monitoring a liquefied gas storage tank in the special gas field where demand is increasing owing to the continuous growth of related fields such as the semiconductor, display, and ICT convergence electronics industries. We have proposed a system for real - time monitoring using wireless sensor network technology, and implemented a system consisting of a sensor unit, transmitter module, and receiver module to be attached to a liquefied gas storage tank. The system was applied to LCO2 tanks among various liquefied gas storage tanks to verify the feasibility. The storage tanks employed in the experiments has capacities of 16,179 l and was 1,920 mm in inner diameter. Furthermore, the density was 1.03 g/l. The measured data were compared with reference data on the remaining gas level versus the $CO_2$ height of the surface, expressed using a conventional water meter, provided by an existing storage tank supplier. The experimental results show that the data is similar to the standard data provided by the tank supplier, and has a high accuracy and reliability within an error range of 0.03%.

LPG 고압탱크 레벨 게이지(Level Gauge)용 발포부표 제조 기술 (Preparation Technique of Foam-Floater to Level Gauge of LPG Tank with High Pressure)

  • 김병식;홍주희;정용재;허광범
    • 공업화학
    • /
    • 제17권4호
    • /
    • pp.361-368
    • /
    • 2006
  • 본 연구는 독립적 기공(또는 기포)을 함유하고 특히, $50kg_f/cm^2$의 압력에도 외형의 변화가 없고, 상온의 액화석유가스 (liquefied petroleum gas; LPG)에 72 h 침적시 무게 변화율이 5 wt% 이내인 LPG 고압 탱크용 발포 부표의 제조 기술을 개발하는데 목적이 있다. 각각의 다른 유황(325 Mesh와 400 Mesh)과 발포제(foaming agent)로 제조된 부표의 내압침적 실험에서 무게 변화율은 큰 차이를 보이지 않았으나 유황 400 Mesh와 발포제 AC를 이용한 부표의 기공이 더 작고 독립 기포율이 높았다. $50kg_f/cm^2$ 수압 실험에서 중립열분해(medium thermal; MT) 카본을 사용한 부표가 중보강성(semi reinforcing furnace; SRF) 카본보다 작은 무게 변화율을 나타내었다. 또한, 제조된 부표를 후처리($60^{\circ}C$, 24 h)한 경우 부표내 기공벽의 경도와 내압성이 증가되었다. 한편, 제조된 부표의 비중 0.30 이하인 제품은 찌그러지거나 깨지는 현상이 발생하고 비중이 0.35 이상으로 높으면 부력이 떨어져 부표로서 기능을 하지 못하였다. 그러므로, $50kg_f/cm^2$의 내압성을 가지기 위해서는 비중이 0.30~0.35인 부표가 가장 우수한 성능을 갖는 것으로 판단되었다.

조선/해양용 다단 블레이드 I.G.G 블로워의 개발 (The Development of Multi-Blades I.G.G Blower for Shipbuilding & Ocean)

  • 장성철;박래방;허남수
    • 한국생산제조학회지
    • /
    • 제21권3호
    • /
    • pp.446-450
    • /
    • 2012
  • I.G.G is abbreviation for inert gas generator high temperature in cargo tank it desulfurize, exhaust and froze the gas that combined brimstone element and soot, then supply inert gas by blower and mack tank inside incombustible range this is equipment that nip in the bud the explosion. The blower for suppling inactivated gas has big impeller with heavy weight to achieve the high pressure, it causes a delay for first operation time and too much load is delivered to motor, total destruction by fire of motor is happen frequently. On this research, we will reduce the size and weight of impeller and install it with several stage, it makes an effect for reducing the first operation time. We also intend to contribute to efficient I.G.G. blower design by research a flow rate and pressure specialty from the diameter of impeller number of blades and size of casing.

유압구동장치 동력원용 고무 다이아프램 저유기의 수명 예측 연구 (Life-Time Prediction of HNBR Diaphragm in Oil Reservoir)

  • 김솔아
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권2호
    • /
    • pp.32-37
    • /
    • 2021
  • The piston reservoir is mainly used in hydraulic blow-down system for aerospace engineering. The reservoir is heavy due to both hydraulic cylinder and piston in pressurization. The positive expulsion tank with rubber diaphragm has been mostly applied propellant and fuel tank at low pressure to satellites. To reduce weight, the reservoir that can be used at high pressure with rubber diaphragm was developed. In this research, the prediction of life-time for the rubber diaphragm was implemented through an accelerated life test, as a part of development of new reservoir. Also, the diaphragm was stored in an temperature chamber at the same condition as and operation with hydraulic oil. As a result, the life-time for a rubber diaphragm was successfully evaluated via Arrhenius law and Time-Temperature Superposition based on failure times over temperatures in the accelerated test.