• 제목/요약/키워드: High pressure seal

검색결과 126건 처리시간 0.03초

궤도차량 현수장치 고압용 시일의 피로마모 개선 연구 (A Study on Fatigue Wear Improvement of High Pressure Seal for Tracked Vehicle Suspension)

  • 이용준;김형현;김경로;구융서
    • 한국군사과학기술학회지
    • /
    • 제20권1호
    • /
    • pp.12-17
    • /
    • 2017
  • In this paper, causes of wear on high pressure seals for suspension are analyzed, and the result of reproduction test and verification on improved design are described. First, by performing the observation of worn surfaces and its failure analysis, the primary cause of wear on the seals are analyzed. The result of analysis shows that the main failure mechanism of wear is a fatigue wear, and test criteria for failure reproduction are set up with consideration for frequency condition, surface roughness and pressure. Durability comparison test on the condition of low amplitude and high frequency is carried out. And, it is found that the durability of wear on seals by increasing hardness of cylinder and managing for surface roughness is enhanced.

초저온 버터플라이 밸브용 탄성 메탈실의 누설방지에 관한 연구 (Seat Tightness of Flexible Metal Seal of Butterfly Valve at Cryogenic Temperatures)

  • 안준태;이경철;이용범;한승호
    • 대한기계학회논문집A
    • /
    • 제35권6호
    • /
    • pp.643-649
    • /
    • 2011
  • LNG 선박에 사용되는 초저온용 버터플라이 밸브의 개발에 있어, 누설검증은 가장 중요한 설계공정 중 하나이다. 초저온에서 누설방지가 가능한 실로서 인코넬 스프링과 같은 탄성지지체가 포함된 O-링 형태의 메탈실이 널리 사용되고 있으나, 제작비가 고가인 단점을 갖고 있다. 이에 대한 대안으로 부가적인 탄성지지체 없이도 누설조건을 만족시키며, 제작비가 저렴한 탄성 메탈실의 개발이 요구되고 있다. 본 연구에서는 탄성 메탈실의 누설방지를 위한 설계조건을 정립하여, 초저온 및 고압환경에서 누설방지가 가능한 탄성 메탈실의 형상을 수치해석을 통해 고찰하였다. 아울러 이를 기반으로 시제품을 개발하고, 상온 및 초저온 상태에서 BS6755 및 BS6364 에 준하는 누설시험을 실시하여 누설여부를 확인하였다.

액체로켓엔진 터보펌프의 금속 실 체결부 해석 (Analysis of Joints Using Metal Seals in Liquid Rocket Engine Turbopump)

  • 윤석환;전성민;김진한
    • 한국추진공학회지
    • /
    • 제17권6호
    • /
    • pp.105-112
    • /
    • 2013
  • 액체로켓엔진의 핵심부품인 터보펌프는 회전체와 케이싱으로 이루어진 여러 부품의 조립체로서 각종 체결 부분에 매질의 누설방지를 위한 실이 삽입된다. 특히 극저온 환경에서 작동하는 산화제펌프와 고온에서 작동하는 터빈 케이싱에는 안정적인 누설방지를 위하여 금속 실이 사용되는데, 금속 실은 높은 초기 체결력을 요하므로 이를 뒷받침할 수 있는 플랜지 및 체결요소의 적절한 구조 설계가 필수적이다. 본 연구에서는 산화제펌프에 사용하는 콘형 실(conical seal) 및 터빈에서 사용하는 금속 평 실(solid metal seal)과 C 실에 대하여 적절한 실 캐비티 및 플랜지 형상을 설계하고, 체결요소의 치수와 수량을 결정하여 건전한 체결 및 운전이 보장될 수 있도록 구조해석을 수행하여 검증하였다.

스크롤 컴프레서 팁실의 마찰특성 (Friction Characteristics of the Tip Seal in a Scroll Compressor)

  • 정봉수
    • Tribology and Lubricants
    • /
    • 제30권6호
    • /
    • pp.370-377
    • /
    • 2014
  • The basic elements in a rotary-type scroll compressor are two identical spiral scrolls containing refrigerant gas. The pressure variations in the compression pockets of a scroll compressor change the forces acting on the orbiting scroll, and these forces affect the dynamic behavior of the compression mechanism parts. To achieve high efficiency, using a self-sealing mechanism as a tip seal mechanism is very effective. Tip seals, which are placed on top of the scroll wraps, accomplish thrust sealing. This study calculates the friction force between the tip seal and the side plate of a scroll compressor using the numerical model considered in the Reynolds equation. The calculated friction force is verified by an experiment using a pin-on-disk apparatus. A hydraulic servo valve that controls the pressure of the oil hydraulic cylinder applies the normal load for the test, and a DC servo motor controls the sliding velocity of the disk. The friction force and normal load are measured by the force sensors attached to the supporting parts. The results show that the theoretical and experimental results are similar and that the friction is influenced by the viscosity of the oil and the sliding velocity of the scroll.

고온.고압용 벨로우즈 실 밸브의 유동 특성 및 열응력 해석 (Thermal Stress Analysis and Flow Characteristics of a Bellows-Seal Valve for High Pressure and Temperature)

  • 김광수;이종철;김윤제
    • 한국유체기계학회 논문집
    • /
    • 제8권6호
    • /
    • pp.40-46
    • /
    • 2005
  • Because of design and manufacturing costs, it is important to predict an expected life of bellows with component stresses of bellows as its design factors and material characteristics. In this study, numerical analyses are carried out to elucidate the thermal and flow characteristics of the bellows-seal gate and globe valves for high temperature (max. $600^{\circ}C$) and for high pressure (max. $104 kgf/cm^2$) conditions. Using commercial codes, FLUENT, which uses FVM and SIMPLE algorithm, and ANSYS, which uses FEM, the pressure and temperature fields are graphically depicted. In addition, when bellows have an axial displacement, thermal stress affecting bellows life is studied. The pressure and temperature values obtained from the flow analyses are adopted as the boundary conditions for thermal stress analyses. As the result of this study, we got the reasonable coefficients for valve and thermal stress for bellows, compared with existing coefficients and calculated values.

SOFC용 유리-세라믹섬유 복합기밀재의 고온 기체누설 거동 (High Temperature Gas Leak Behavior of Glass-Ceramic Fiber Composite Seals for SOFC Applications)

  • 이재춘;권혁천;권영필;박성;장진식;이종호;김주선;이해원
    • 한국세라믹학회지
    • /
    • 제42권12호
    • /
    • pp.842-845
    • /
    • 2005
  • Glass composites containing ceramic fiber have been developed for Solid Oxide Fuel Cell (SOFC) seals. Effect of glass type, loading pressure and thermal cycle the leak rates of composite seals was investigated. Seal performance of two commercial glasses was compared with that of $SiO_2BaO-B_2O_3$ glass synthesized in this work. The leak rate for seals made of pyrex(R) increases from $\~0.0005\;to\;\~0.004sccm/cm$ as the gas pressure increases from 10 to 50 kPa. The soda lime silicate glass seal shows the leak rate two times higher than the one made of pyrex(R) or $SiO_2BaO-B_2O_3$ glass. The viscosity of glass at the seal test temperature is presumed to affect the leak rate of the glass seal. As the applied loading pressure increases from 0.4 to 0.8 MPa at $750^{\circ}C$, the leak rate decreases from 0.038 to 0.024 sccm/cm for composite seals. It has been found that during 50 thermal cycles between $450^{\circ}C\;to\;700^{\circ}C$ leak rates remained almost constant, ranging from 0.025 to 0.03sccm/cm. The results showed an excellent thermal cycle stability as well as sealability of the glass matrix ceramic fiber composite seals.

초고압 시스템의 안전성 확보에 대한 연구 (A Study of Safety Acquirement for an Assessment of Ultra High Pressure System)

  • 이기천;김형의;김재훈
    • 한국안전학회지
    • /
    • 제25권5호
    • /
    • pp.7-14
    • /
    • 2010
  • Ultra high pressure system, which can be generally increased over 1,000bar, needs to have sealing mechanism to protect leakage and selection of the materials used in the intensifier. Components such as pressure vessel, hydraulic hose assembly, accumulator, hydraulic cylinder, hydraulic valve, pipe, etc., are tested under the impulse-pressure conditions. Components need to be tested under 1.5 to 3 times of rated pressure to check the tolerance even though rated pressure range of these components are not ultra high pressure. So, the ultra high pressure system needs to be equiped to test components. In this study, safety assessments of ultra high pressure system which are using failure analysis of components, changing the types of the control system, and finite element analysis with static condition, are investigated.

비 접촉 드라이 가스 시일의 변형에 관한 연구 (FE Deformation Analysis of Noncontact Dry Gas Seal)

  • 허유정;이재환;이안성
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 추계학술대회 논문집
    • /
    • pp.41-46
    • /
    • 2003
  • In this paper, two different methods are developed to be used for the design of noncontact dry gas seal which is used to prevent gas leakage of high speed rotating shaft-housing machineries. First method is using FEA to compute the deformation of seal face and the other is using Influence Coefficient Method in order to save computation of FEA. In both cases, heat load and mechanical loads are applied such as heat generation, bulk temperature and nodal force, bulk pressure, centrifugal force, respectively. ICM method is verified correct and effective and both methods give reliable and useful deformation results for the design of mechanical seals.

  • PDF

고압 터보펌프용 플로팅 링 실의 거동과 동특성의 상관관계에 관한 실험 (Test Results of Correlation between Behavior and Dynamic Characteristics of Floating Ring Seal In High Pressure Turbopump)

  • 신성광;이용복;곽현덕;김창호;장건희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.471-477
    • /
    • 2003
  • The floating ring seal is often used in the turbopump (TP) unit of liquid rocket engine (LRE) owing to its inherent ability of minimizing the leakage flow and superior dynamic characteristics as well. This paper describes the test results concerned with the lock-up and dynamic characteristics of the floating ring seals in the turbopump. The characteristics of the floating ring seals were extracted from the frequency response function (FRF) by instrumental variable method. The experiment was tested at 7.0MPa and 0-24,800 rpm. And the test results were introduced about the dynamic characteristics of floating ring seal related with the eccentricity and attitude angle.

  • PDF

금속 실을 이용한 터보펌프 체결부 설계 (Design of Joints Using Metal Seals in Turbopump)

  • 윤석환;전성민;김진한
    • 항공우주시스템공학회지
    • /
    • 제8권1호
    • /
    • pp.24-29
    • /
    • 2014
  • Turbopump is typically an assembly of rotors and casings, and there are a number of joints between them. Every joint should be leak-proof, so there is always a seal to accomplish the goal. Among various seals, metal seals are advantageous in that they are robust at high pressure, and at wide range of temperature. On the other hand, they require very high tightening forces, so that flanges, bolts and nuts should be carefully designed to ensure structural integrity and to prevent detrimental yielding of components. In this study, flange joints using conical seals made of stainless steel, solid flat metal seals made of copper and metal C-seals made of Inconel 718 were structurally designed and analyzed, considering both initial tightening and operating conditions.