• Title/Summary/Keyword: High pressure hydrogen gas

Search Result 319, Processing Time 0.031 seconds

Hydrogen Production by Pyrolysis of Natural Gas : Thermodynamic Analysis (천연가스 열분해에 의한 수소 생산 : 열역학적 해석)

  • Yoon, Y.H.;Park, N.K.;Chang, W.C.;Lee, T.J.;Hur, T.;Lee, B.G.;Baek, Y.S.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.1
    • /
    • pp.42-51
    • /
    • 2002
  • Methane can be converted directly to hydrogen by pyrolysis. The reaction is highly endothemic and heat must be supplied at high temperatures. Gibbs free energy minimization calculations have been carried out for the methane pyrolysis to determine equilibrium products. The calculation parameters are the temperature, the initial H/C ratio, the pressure and Gibbs energies of each substance. Methane, ethylene, acetylene, benzene, naphthalene, and hydrogen are the main products. Excluding hydrogen, it is observed that ethylene and aromatics(benzene+naphthalene) are predominant products below 1400K, whereas acetylene is significantly formed above 1400K. Hydrogen dilution increases the selectivities for ethylene and acetylene and decreases the selectivity for aromatics. Increasing the pressure also decreases the decomposition of methane.

Characterization of the Hydrogen Reservoir for a High Power Gas Switch

  • Lee, Byeong-Jun;Park, Seong-Su;Kim, Sang-Hui;Gwon, Se-Jin;Jang, Seong-Deok;Mun, Yong-Jo;Ju, Yeong-Do;Kim, Chang-Beom;Hwang, Il-Mun;Sin, Seung-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.547-547
    • /
    • 2013
  • This paper presents the understandings carried out for the installation of the hydrogen reservoir of the multi-gap pseudospark switch under developing for the accelerator applications. As a cold cold cathode switch, the pseudospark switch could replace the thyratron switch which has hot cathode and being used well currently in the high power field such as laser and accelerator applications. Especially in the klystron modulator, the key component is a switch which mostly defines the jitter and the instability of the modulator system. To get the less jitter and the instability, we need to find proper range of the pressure for the gas discharge inside gas switch. This could be achieved by the understanding of the characteristic of the nonevaporable getter (NEG) which is used as a hydrogen reservoir for the switch. Therefore we verified the characteristics of the NEG (St 172, Saes) and its installation in the switch. Finally we controlled the getter to find best pressure point for the pseudospark switch.

  • PDF

A Study on the Safety Management of High Pressure Underground Pipeline in Industrial estate (산업단지 고압매설배관 안전관리 고찰)

  • Choi, Hyun-Woong;Chung, Se-Kwang;Kim, Jin-Jun
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.6
    • /
    • pp.30-38
    • /
    • 2017
  • Established in the 1960s, high pressure underground pipelines in Ulsan and Yeosu industrial estate are underground as toxic gas as well as combustible gas that is heavier than city gas and low combustion range. Especially, industrial pipelines occupy more than 20 years old pipes. In this way, the industrial estate pipeline was installed before the introduction of the supervision of construction, However, unlike the city gas pipeline, the pipeline is managed without any legal obligation. In this study, the safety management status of high pressure underground pipelines and urban gas underground pipelines in the industrial estate is analyzed and comparison of laws, extent of damage impact, using the pipe inspection model for pipe inspection of high pressure piping system with the existing piping system. it is intended to cuntribute to improving the safety of industrial estate are underground pipeline.

Numerical Evaluation of Flow Nature at the Downstream of a Ball Valve Used for Gas Pipelines with Valve Opening Rates (개도율에 따른 가스파이프라인용 볼 밸브 후류유동의 수치평가)

  • KIM, CHUL-KYU;LEE, SANG-MOON;JANG, CHOON-MAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.4
    • /
    • pp.370-377
    • /
    • 2018
  • Ball valve has been widely used in the field of high-pressure gas pipeline as an important component because of its low flow resistance and good leakage performance. The present paper focuses on the flow nature at the downstream of the ball valve used for gas pipelines according to valve opening rates. Steady 3-D RANS equations, SC/Tetra, have been introduced to analyze the flow characteristics inside the ball valve. Numerical boundary conditions at the inlet and outlet of the valve system are imposed by mass flow-rate and pressure, respectively. Velocity distributions obtained by numerical simulation are compared with respect to the valve opening rates of 30, 50, and 70%. Cavity distributions, asymmetry flow velocity and the flow stabilization point at each opening rate are also compared. When the valve opening rates are 30 and 50%, the flow stabilization requires the sufficient length of 10D or more due to the influence of the recirculation flow at the downstream of the valve.

Development of Safety Assessment for Hydrogen Fuel Cell Vehicle (수소연료전지 자동차 안전성 평가기술 개발)

  • Yong, Gee Joong;Lee, Kwang Bum
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.5
    • /
    • pp.500-508
    • /
    • 2014
  • In the ongoing debates over the need to identify new sources of energy and to reduce the emissions of greenhouse gases. Hydrogen has emerged as one of the most promising alternatives due to its emissions from the vehicle being virtually zero. The governments have identified the development of regulations and standards as one of the key requirements for commercialization of HFCV. Regulations and standards will help overcome technological barriers to commercialization. The development of Global Technical Regulation (GTR) for HFCV occurred under the World Forum for Harmonization of Vehicle Regulations. Development of a technique for safety assessment of HFCV include four tasks, research for regulation system and policy, hydrogen safety, vehicle operation safety and protection against high-voltage. The objective is to establish a technique for safety assessment and amend safety standards for HFCV and consequently reflect research results to vehicle management policy. We devised safety standards and evaluation techniques with regard to high-pressure gas and high voltage of hydrogen fuel cell vehicle. KMVSS for HFCV was amended to June 10, 2014. including the results of the safety assessment technology for high-voltage and hydrogen characteristics.

A Study on Improving Fatigue Life for Composite Cylinder with Seamless Integrated Liner (이음매 없는 일체형 라이너를 갖는 복합재 압력용기의 피로수명 향상에 대한 연구)

  • Kim, Hyo-Joon
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.46-51
    • /
    • 2013
  • Composite cylinder is used by hydrogen fuel cell vehicles and natural gas vehicles because of high specific modulus, specific strength and fatigue resistance. composite cylinder has a seamless integrated liner and it is fully overwrapped with structural fibers of high strength carbon fibers in an epoxy matrix. In this study, filament winding pattern and autofrettage pressure design technique are presented considering structural weakness of knuckle and compressive residual stress. Presented methodology is verified by pressure cycling test of composite cylinders.

Effects of Atmospheric Pressure Microwave Plasma on Surface of SUS304 Stainless Steel

  • Shin, H.K.;Kwon, H.C.;Kang, S.K.;Kim, H.Y.;Lee, J.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.268-268
    • /
    • 2012
  • Atmospheric pressure microwave induced plasmas are used to excite and ionize chemical species for elemental analysis, for plasma reforming, and for plasma surface treatment. Microwave plasma differs significantly from other plasmas and has several interesting properties. For example, the electron density is higher in microwave plasma than in radio-frequency (RF) or direct current (DC) plasma. Several types of radical species with high density are generated under high electron density, so the reactivity of microwave plasma is expected to be very high [1]. Therefore, useful applications of atmospheric pressure microwave plasmas are expected. The surface characteristics of SUS304 stainless steel are investigated before and after surface modification by microwave plasma under atmospheric pressure conditions. The plasma device was operated by power sources with microwave frequency. We used a device based on a coaxial transmission line resonator (CTLR). The atmospheric pressure plasma jet (APPJ) in the case of microwave frequency (880 MHz) used Ar as plasma gas [2]. Typical microwave Pw was 3-10 W. To determine the optimal processing conditions, the surface treatment experiments were performed using various values of Pw (3-10 W), treatment time (5-120 s), and ratios of mixture gas (hydrogen peroxide). Torch-to-sample distance was fixed at the plasma edge point. Plasma treatment of a stainless steel plate significantly affected the wettability, contact angle (CA), and free energy (mJ/$m^2$) of the SUS304 surface. CA and ${\gamma}$ were analyzed. The optimal surface modification parameters to modify were a power of 10 W, a treatment time of 45 s, and a hydrogen peroxide content of 0.6 wt% [3]. Under these processing conditions, a CA of just $9.8^{\circ}$ was obtained. As CA decreased, wettability increased; i.e. the surface changed from hydrophobic to hydrophilic. From these results, 10 W power and 45 s treatment time are the best values to minimize CA and maximize ${\gamma}$.

  • PDF

Flow Analysis of Check Valve for Hydrogen Vehicle Refueling Line (수소자동차의 연료주입라인용 Check Valve 내의 유동해석)

  • Park, Kyong-Taek;Yeo, Kyeong-Mo;Park, Tae-Jo;Kang, Byeong-Roo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.565-568
    • /
    • 2007
  • The high pressure hydrogen gas refueling system is required for fuel cell vehicle. In this paper, a commercial computational fluid dynamics (CFD) code, FLUENT is adopted to investigate the gas flow characteristics inside the check valve for various refueling and tank pressures. The results showed that the choking phenomena can occur for certain refueling pressures, therefore refueling processes should be divided by multiple stages. And a design method to prevent the seal departure problem which reported in CNG usages is required.

  • PDF

A SMALL MODULAR REACTOR DESIGN FOR MULTIPLE ENERGY APPLICATIONS: HTR50S

  • Yan, X.;Tachibana, Y.;Ohashi, H.;Sato, H.;Tazawa, Y.;Kunitomi, K.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.3
    • /
    • pp.401-414
    • /
    • 2013
  • HTR50S is a small modular reactor system based on HTGR. It is designed for a triad of applications to be implemented in successive stages. In the first stage, a base plant for heat and power is constructed of the fuel proven in JAEA's $950^{\circ}C$, 30MWt test reactor HTTR and a conventional steam turbine to minimize development risk. While the outlet temperature is lowered to $750^{\circ}C$ for the steam turbine, thermal power is raised to 50MWt by enabling 40% greater power density in 20% taller core than the HTTR. However the fuel temperature limit and reactor pressure vessel diameter are kept. In second stage, a new fuel that is currently under development at JAEA will allow the core outlet temperature to be raised to $900^{\circ}C$ for the purpose of demonstrating more efficient gas turbine power generation and high temperature heat supply. The third stage adds a demonstration of nuclear-heated hydrogen production by a thermochemical process. A licensing approach to coupling high temperature industrial process to nuclear reactor will be developed. The low initial risk and the high longer-term potential for performance expansion attract development of the HTR50S as a multipurpose industrial or distributed energy source.

Carbon Nanotube Synthesis with High Purity by Introducing of NH3 Etching Gas (암모니아 식각 가스 도입에 의한 고순도 탄소나노튜브의 합성)

  • Lee, Sunwoo;Lee, Boong-Joo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.782-785
    • /
    • 2013
  • Multi-walled carbon nanotubes were synthesized on Ni catalyst using thermal chemical vapor deposition. By introducing ammonia gas during the CNT synthesis process, clean and vertically aligned CNTs without impurities could be prepared. As the ammonia gas increased a partial pressure of hydrogen in the mixed gas during the CNT synthesis process, we could control the CNT synthesis rate appropriately. As the ammonia gas has an etching ability, amorphous carbon species covering the catalyst particles were effectively removed. Therefore catalyst particles could maintain their catalytic state actively during the synthesis process. Finally, we could obtain clean and vertically aligned CNTs by introducing $NH_3$ gas during the CNT synthesis process.