• 제목/요약/키워드: High pressure environments

검색결과 181건 처리시간 0.031초

니켈기 합금 Alloy 617의 950℃ 대기/헬륨 분위기에서 산화거동 고찰 (Investigation of Oxidation Behavior of Alloy 617 under Air/Helium Environments at 950℃)

  • 정수진;이경근;김동진
    • Corrosion Science and Technology
    • /
    • 제17권5호
    • /
    • pp.218-224
    • /
    • 2018
  • Alloy 617 is a candidate Ni-based superalloy for intermediate heat exchanger (IHX) of a high-temperature gas reactor (VHTR), because of its good creep strength and corrosion resistance at high temperature. Small amount of impurities such as $H_2O$, $H_2$, CO and $CH_4$ are introduced inevitably in helium, as a coolant during operation of a VHTR. Reactions of material and impurities are accelerated with increase of temperature to $950^{\circ}C$ of operating temperature of a VHTR, leading to material corrosion aggravation. In this circumstance, high-temperature corrosion tests were performed at $950^{\circ}C$ in air and impure helium environments, up to 250 hours in this study. Oxidation rate of $950^{\circ}C$ in an air environment was higher than that of impure helium, explained by difference in outer oxide morphology and microstructure as a function of oxygen partial pressure. An equiaxed Cr-rich surface oxide layer was formed in an air environment, and a columnar Cr-rich oxide was formed in an impure helium environment.

개활지 및 구조물 내에서의 폭풍파 특성에 대한 수치 분석 (Numerical Analysis on Characteristics of Blast Wave in Open Space and Structure)

  • 노태준;이영헌;지준태;이웅현;여재익
    • 한국군사과학기술학회지
    • /
    • 제23권1호
    • /
    • pp.43-51
    • /
    • 2020
  • In this study, numerical analysis was carried out on a complex pressure field of blast waves caused by the detonation of high explosives in various environments. The generated blast waves propagated in the air, upon the sudden release of high energy induced by the explosion. Reflected waves were created when the pressure waves encountered certain obstacles such as the ground or the walls of structures. The propagation of the blast waves and its interaction with the reflected waves were simulated. An adaptive mesh refinement was applied to improve the efficiency of distribution of computer resource, for the computational calculation of the blast wave propagation in a wide open space. In addition, the integration of the calculation domains for the explosive and air were considered when the maximum density of the explosive region was below critical value. The results were verified by comparison with the pressure time history from blast wave experiments performed under two topographical conditions.

Measurement of Heat Flux in Rocket Combustors Using Plug-Type Heat Flux Gauges

  • Kim, Min Seok;Yu, I Sang;Kim, Wan Chan;Shin, Dong Hae;Ko, Young Sung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권4호
    • /
    • pp.788-796
    • /
    • 2017
  • This paper proposes a new measurement method to improve the shortcomings of an existing integral method for measuring heat flux in plug-type heat flux gauges in the high-temperature and high-pressure environments of liquid-rocket combustors. Using the existing integral measurement method, the calculation of the surface area for the heat flux in the gauge exhibits error in relation to the actual surface area. To solve this problem, transient profiles obtained from ANSYS Fluent were used to calculate unsteady heat flux as it adjusted to the measured temperature. First, a heat flux gauge was designed and manufactured specifically for use in the high-temperature and high-pressure conditions that are similar to those of liquid rocket combustors. A calibration test was performed to prove the reliability of the manufactured gauge. Then, a combustion experiment was conducted, in which the gauge was used to measure unsteady heat flux in a liquid rocket combustor that used kerosene and liquid oxygen as propellants. Reasonable heat flux values were obtained using the gauge. Therefore, the proposed measurement method is considered to offer significant improvement over the existing integral method.

Fatigue Crack Growth Characteristics of the Pressure Vessel Steel SA 508 Cl. 3 in Various Environments

  • Lee, S. G.;Kim, I. S.;Park, Y. S.;Kim, J. W.;Park, C. Y.
    • Nuclear Engineering and Technology
    • /
    • 제33권5호
    • /
    • pp.526-538
    • /
    • 2001
  • Fatigue tests in air and in room temperature water were performed to obtain comparable data and stable crack measuring conditions. In air environment, fatigue crack growth rate was increased with increasing temperature due to an increase in crack tip oxidation rate. In room temperature water, the fatigue crack growth rate was faster than in air and crack path varied on loading conditions. In simulated light water reactor (LWR) conditions, there was little environmental effect on the fatigue crack growth rate (FCGR) at low dissolved oxygen or at high loading frequency conditions. While the FCGR was enhanced at high oxygen condition, and the enhancement of crack growth rate increased as loading frequency decreased to a critical value. In fractography, environmentally assisted cracks, such as semi-cleavage and secondary intergranular crack, were found near sulfide inclusions only at high dissolved oxygen and low loading frequency condition. The high crack growth rate was related to environmentally assisted crack. These results indicated that environmentally assisted crack could be formed by the Electrochemical effect in specific loading condition.

  • PDF

Testing Investigation of Protective Coatings for Downhole Oil Tube

  • Zhang, Liping;Zhang, Qibin;Zhang, Yanjun;Xie, Beibei;Zhang, Yingying
    • Corrosion Science and Technology
    • /
    • 제7권1호
    • /
    • pp.13-15
    • /
    • 2008
  • Aiming at the corrosion circumstances and corrosion prevention needs of downhole oil tubes, series protective coatings for downhole oil tubes have been developed in the authors' laboratory, including a baked type coating YG-01 and an air curing type coating YG-03, etc. The performance investigation of the coatings has been done for testing their corrosion resistance, mainly including salt fog test, immersion test in oil-field waste water and various acid solutions, high temperature and high pressure test in alkali solution or $H_2S/CO_2$ environment, as well as some other performances. The investigation results show that oil tube anti-corrosion coatings developed here can endure over 4000 hrs salt fog test, over 1000 hrs immersion in various acid solutions at room temperature and in boiling oil-field waste water. In addition, the coatings can keep intact after experiencing test in alkali solution under 70 MPa pressure at $150^{\circ}C$ for 24 hrs, and in simulative sour gas environment under the total pressure of 32 MPa ($P_{H_{2}S}=3.2MPa$, $P_{CO_{2}}=3.2MPa$) at $90^{\circ}C$ for 168 hrs, which show that the coatings can be used for corrosion prevention in downhole environments with specific high temperature and high pressure, such as sour gas wells. The other testing results show the oil tube protective coatings have excellent comprehensive performance.

Characteristics of Bovine Teeth Whitening in Accordance with Gas Environments of Atmospheric Pressure Nonthermal Plasma Jet

  • Sim, Geon Bo;Kim, Yong Hee;Kwon, Jae Sung;Park, Daehoon;Hong, Seok Jun;Kim, Young Seok;Lee, Jae Lyun;Lee, Gwang Jin;Lim, Hwan Uk;Kim, Kyung Nam;Jung, Gye Dong;Choi, Eun Ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.250.2-250.2
    • /
    • 2014
  • Currently, teeth whitening method which is applicable to dental surgery is that physician expertises give medical treatment to teeth directly dealed with a high concentration of hydrogen peroxide and carbamide peroxide. If hydrogen peroxide concentration is too high for treatment of maximized teeth whitening effect [1], it is harmful to the human body [2]. To the maximum effective and no harmful teeth whitening effect in a short period of time at home, we have observed the whitening effect using carbamide peroxide (15%) and a low-temperature atmospheric pressure plasma jet which is regulated by the Food and Drug Administration. The gas supplied conditions of the non-thermal atmospheric pressure plasma jet was with the humidified (0.6%) gas in nitrogen or air at gas flow rate of 1000 sccm. Also, the measurement of chemical species from the jet was carried out using the optical emission spectroscopy (OES), the evidence of increased reactive oxygen species compared to non-humidified plasma jet. We have found that the whitening effect of the plasma is very excellent through this experiment, when bovine teeth are treated in carbamide peroxide (15%) and water vapor (0.2 to 1%). The brightness of whitening teeth was increased up to 2 times longer in the CIE chromaticity coordinates. The colorimetric spectrometer (CM-3500d) can measure color degree of whitening effect.

  • PDF

초내열합금 U720의 노출시험에 따른 크리프 특성 (Creep Properties of Superalloy Udimet 720 in relation to Exposed)

  • 공유식;오세규
    • 동력기계공학회지
    • /
    • 제5권2호
    • /
    • pp.57-62
    • /
    • 2001
  • Gas turbine performance is highly dependent on the engine performance which is closely related to the engine materials since they are exposed to severe working environments, i.e, high temperature and high stresses. For this reason, advanced materials with improved properties are required for the engine. The purpose of this research is to develop key materials technologies for aircraft industry and to tester domestic production of related parts. In this paper, the real-time prediction of high temperature creep strength and creep life for nickel-based superalloy Udimet 720(high-temperature and high-pressure the gas turbine engine materials) was performed on round-bar type specimens under pure load at the temperatures of 538, 649 and $704^{\circ}C$.

  • PDF

Improving Sensitivity of SAW-based Pressure Sensor with Metal Ground Shielding over Cavity

  • Lee, Kee-Keun;Hwang, Jeang-Su;Wang, Wen;Kim, Geun-Young;Yang, Sang-Sik
    • 마이크로전자및패키징학회지
    • /
    • 제12권3호
    • /
    • pp.267-274
    • /
    • 2005
  • This paper presents the fabrication of surface acoustic wave (SAW)-based pressure sensor for long-term stable mechanical compression force measurement. SAW pressure sensor has many attractive features for practical pressure measurement: no battery requirement, wireless pressure detection especially at hazardous environments, and easy other functionality integrations such as temperature, humidity, and RFID. A $41^{\circ}$ YX $LiNbO_3$ piezoelectric substrate was used because of its high SAW propagation velocity and large values of electromechanical coupling factors $K^2$. A silicon substrate with $\~200{\mu}m$ deep cavity was bonded to the diaphragm with epoxy, in which gold was covered all over the inner cavity in order to confine electromagnetic energy inside the sensor, and provide good isolation of the device from its environment. The reflection coefficient $S_{11}$ was measured using network analyzer. High S/N ratio, sharp reflected peaks, and clear separation between the peaks were observed. As a mechanical compression force was applied to the diaphragm from top with extremely sharp object, the diaphragm was bended, resulting in the phase shifts of the reflected peaks. The phase shifts were modulated depending on the amount of applied mechanical compression force. The measured $S_{11}$ results showed a good agreement with simulated results obtained from equivalent admittance circuit modeling.

  • PDF

아임계 및 초임계 탄화수소 연료 액적의 기화 특성 연구 (Vaporization of Hydrocarbon Fuel Droplet in Supercritical Environments)

  • 이경재;이봉수;김종현;구자예
    • 한국항공우주학회지
    • /
    • 제31권7호
    • /
    • pp.85-93
    • /
    • 2003
  • 주위 압력변화에 따른 공기중에 놓인 탄화수소 연료 액적의 기화에 관한 수치적 연구를 일차원 기화모델을 사용하여 수행하였다. 주위 압력은 대기압에서 임계압력이상까지 변화시켰다. 높은 압력에서 실기체 효과를 고려하기 위해 수정 Soave-Redich-Kwong상태 방정식을 사용하였으며 임계온도 근방과 초임계상태에서는 비이상기체 열역학 및 전달 물성치를 고려하였다. 계산의 타당성을 위해 계산 결과와 사토의 실험결과를 비교하였고 비교적 잘 일치하였다. 아임계 온도에서는 압력증가에 따라 액적수명은 증가하였으며 초임계온도에서는 압력증가에 따라 액적수명은 감소하였다. 고압에서는 액상에 용해되는 질소의 용해도는 무시할 수 없고 온도와 압력이 높을수록 용해도는 증가하였다.

국내 주요 콩과식물인 돌콩(Glycine soja)과 백태(Glycine max) 간의 생리적 차이에 관한 연구 (The Study on the Physiological Differences for Major Fabaceae, Glycine soja and Glycine max in Korea)

  • 박재훈;김의주;유영한
    • 생태와환경
    • /
    • 제54권2호
    • /
    • pp.120-124
    • /
    • 2021
  • In order to understand the vegetative role of Glycine soja, we studied the basic physiological characteristics between Glycine soja and Glycine max. For this study, the light intensity (μmol m-2 s-1) on leaf surface, leaf temperature (℃), transpiration rate (mmol m-2 s-1), photosynthetic rate (μmol m-2 s-1), substomatal CO2 partial pressure (vpm) of Glycine soja and Glycine max were measured, and the quantum yield, photosynthesis rate per substomatal CO2 partial pressure were calculated. In the results of simple regression analysis, the increasing quantum yield decreases leaf temperature both of Glycine soja and Glycine max and the increasing leaf temperature decreases transpiration rate in case of Glycine soja. However, in case of Glycine max, the increasing leaf temperature decreases substomatal CO2 partial pressure, photosynthetic rate, and photosynthetic rate per substomatal CO2 partial pressure as well as transpiration rate. Also, increasing transpiration rate increases substomatal CO2 partial pressure while decreases photosynthetic rate per substomatal CO2 partial pressure. Thus, Glycine soja is relatively more easily adaptable to severe environments with low soil nutrients and high light levels. Compared to Glycine max susceptible to water loss due to a water-poor terrestrial habitat, the physiological traits of Glycine soja has a high average transpiration rate and are less susceptible to water loss will act as a factor that limits the habitat according to soil moisture.