• Title/Summary/Keyword: High pressure environments

Search Result 181, Processing Time 0.033 seconds

Development of Waterproof Acoustic Sensor for Shockwave Measurement (탄환 충격파 측정용 방수 음향센서 개발)

  • Hur, Shin;Lee, Duck-Gyu
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.318-322
    • /
    • 2019
  • In shooting training, an impact point identification system that uses the impact wave of the bullet to check the impact point in the target plate has been recently used. Acoustic sensors used in these systems must be able to detect shock waves of high sound pressure levels and be both waterproof and dustproof for rainy weather and dusty environments, respectively. In this study, membranes with excellent waterproof, dustproof, and sound transmitting characteristics were selected through a characteristics test; a protection cap was installed to install the selected materials. After coupling the produced protection cap to the acoustic sensor housing, the sensitivity and phase characteristics of the acoustic sensor were checked. Through the waterproof and dustproof test, the performances of its sensitivity and phase characteristics were confirmed. Finally, the normal shockwave of a 5.56 mm diameter bullet was measured using a shockwave detection signal collecting plate equipped with a prototype of the acoustic sensor at a 100 m firing range.

Development of Test Equipment for Complex Underwater Environments (수중복합 환경시험장비의 개발에 관한 연구)

  • Kim, Jong Cheol;Lee, Gi Chun;Choi, Byung Oh;Jung, Dong Soo;Lee, Choong Sung;Jeon, Jun Wan;Lee, Jae Ho;Hwang, Kyung Ha
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.871-877
    • /
    • 2015
  • Deep-sea equipment such as underwater robots and unmanned submersible vehicles, include various machine components and sensors, and it is important that their reliabilities be tested before use in the fields. This is necessary because they are affected by complex extreme-environment conditions, such as high pressures, extreme temperatures, and tidal forces that are present in the deep sea. We require test equipment that can conduct empirical tests in conditions that mimic these complex oceanic environments. In this study, we propose specifications that should be met, and a design plan for the primary components, which should limit their use to a maximum water pressure of 2.0 MPa, water temperature of $5{\sim}60^{\circ}C$, and a maximum flow velocity of 2 m/s. in work-in type underwater combined environment test equipment and. We present test system development procedures to verify the reliability of products and systems used in deep-sea environments.

Prevailing Synoptic Patterns for Persistent Positive Temperature Anomaly Episodes in the United States (장기간 지속되는 이상고온기의 종관패턴: 미국을 사례로)

  • Choi, Jong-Nam;Choi, Gwang-Yong;Williams, Thomas
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.5
    • /
    • pp.701-714
    • /
    • 2008
  • This study examines the prevailing synoptic-scale mechanisms favorable for long-lived summer Persistent Positive Temperature Anomalies (PPTAs) as well as winter PPTAs in the United States. Such long-lived PPTAs usually occur in the south-central region of the United States in summer, but in the southwestern part of the United States in winter. Composite analyses of surface and pressure level data demonstrate that the formation of both winter and summer PPTAs is closely related to the movement of subtropical high pressure systems in the Pacific Ocean and Atlantic Ocean, respectively. The occurrence of long-lived summer PPTAs usually coincides with an extremely stable atmospheric condition caused by persistent blocking by mid- to upper-tropospheric anticyclones. Significant surface forcing is also easily identified through relatively high Bowen ratios at the surface. Warm air advection is, however, weak and appears to be an insignificant element in the formation of long-lived summer PPTAs. On the other hand, synergistic warming effects associated with adiabatic heating under an anticyclonic blocking system as well as significant warm air advection characterize the favorable synoptic environments for long-lived winter PPTAs. However, the impact of surface forcing mechanisms on winter PPTAs is insignificant.

Fabrication SiCN micro structures for extreme high temperature systems (초고온 시스템용 SiCN 마이크로 구조물 제작)

  • Thach, Phan Dui;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.216-216
    • /
    • 2009
  • This paper describes a novel processing technique for the fabrication of polymer-derived SiCN (silicone carbonitride) microstructures for extreme microelectromechanical system (MEMS) applications. A polydimethylsiloxane (PDMS) mold was formed on an SU-8 pattern using a standard UV photolithographic process. Next, the liquid precursor, polysilazane, was injected into the PDMS mold to fabricate free-standing SiCN microstructures. Finally, the solid polymer SiCN microstructure was cross-linked using hot isostatic pressure at $400^{\circ}C$ and 205 bar. The optimal pyrolysis and annealing conditions to form a ceramic microstructure capable of withstanding temperatures over $1400^{\circ}C$ were determined. Using the optimal process conditions, the fabricated SiCN ceramic microstructure possessed excellent characteristics includingshear strength (15.2 N), insulation resistance ($2.163{\times}10^{14}\;{\Omega}$, and BDV (1.2 kV, minimum). Since the fabricated ceramic SiCN microstructure has improved electrical and physical characteristics compared to bulk Si wafers, it may be applied to harsh environments and high-power MEMS applications such as heat exchangers and combustion chambers.

  • PDF

Environmental Geochemistry of Atmospheric Mercury: Its Backgriound Concentrations and Exchange Across the Air-Surface Interface (대기수은의 환경지화학: 배경농도측정 및 대기-지표면간의 교환작용)

  • 김기현
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.2
    • /
    • pp.189-198
    • /
    • 1996
  • Mercury (Hg) is ubiquitous throughout the earth's atmosphere. The uniqueness of its atmospheric geochemistry is well-known with the high environmental mobility and relatively long atmospheric residence time (c.a., 1 year) associated with its high chemical stability. Despite a growing recognition of the environmental significance of its global cycling, the prexisting Korean database for atmospheric Hg is extremely rare and confined to a number of concentration measurements conducted under relatively polluted urban atmospheric environments. To help activate the research on this suvject, an in-depth analysis on the current development in the measurements of atmospheric mercury and the associated fluxes has been made using the most using the most updated data ests reported worldwide. As a first step toward this purpose, the most reliable techniques commonly employed in the measurements of its concentration in the background atmosphere are introduced in combination with the flux measurement techniques over soil surface such as: dynamic enclosure (or field flux chamber) method and field micrometeorological method. Then the results derived using these measurement techniques are discussed and interpreted with an emphasis on its mobilization across the terrestrial biosphere and atmosphere interface. A unmber of factors including air/soil temperature, soil chemical composition, soil water content, and barometric pressure are found out to be influential to the rate and amount of such exchange processes. Although absolute magnitude of such exchange processes is insignificant relative to that of the major component like the oceanic environment, this exchange process is thought to be the the predominant natural pathway for both the mobilization and redistribution of atmospheric Hg on a local or regional scale.

  • PDF

The Influence of Two Phase Flow on Fretting Wear between Steam Generator Tube and Supporting Bar (이상 유동 환경이 증기 발생기 세관과 지지대의 프레팅 마모에 미치는 영향에 대한 연구)

  • Lee, Young-Ze;Park, Jung-Min;Jeong, Sung-Hoon;Kim, Jin-Seon;Park, Se-Min
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.362-367
    • /
    • 2008
  • Tubes in nuclear steam generators are held up by supports because the tubes are long and slender. Fluid flows of high-pressure and high-temperature in the tubes cause oscillating motions between tubes and supports. This is called as FIV (flow induced vibration), which causes fretting wear in contact parts of tube-support. The fretting wear of tube-support can threaten the safety of nuclear power plant. The tube and support materials were Inconel 690 and STS 409. The wear tests were conducted in various environments, which are in water without flow, in flowing water and in flowing water with air. The results showed that the flow of water influenced on the wear-life of tube. The wear-life of tube decreased in water flow as compared with wear-life in stationary water.

Study on Field Experiment of Stack Effect Reduction in Stairwell of Building (건축물 계단에서의 연돌효과 저감방안에 대한 현장실험 연구)

  • Kim, Jung-Yup;Kim, Ji-Seok;Lee, Su-Gak
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.9
    • /
    • pp.484-490
    • /
    • 2015
  • The winter stack effect that occurs in vertical construction passages such as the stairwell or elevator shaft of a high-rise building negatively affects living environments, energy usage, and personal safety; therefore, a mitigation of the stack effect is required to improve building conditions. Recently, circulation-type facilities that comprise the usage of air blowers and vertical ducts were proposed as part of a mechanical approach to quantitatively control the stack effect. In this study, these circulation-type facilities were installed in a building stairwell and the performance of the device was evaluated during its operation. A numerical-analysis result was obtained under the test conditions using a network-model-based, numerical-analysis method, and the result was then used for a comparison with the test result.

A Study of Aging Effect for Train Carbody Using Accelerated Aging Tester

  • Nam, Jeong-Pyo;LI, Qingfen;LI, Hong
    • International Journal of Railway
    • /
    • v.1 no.3
    • /
    • pp.113-116
    • /
    • 2008
  • The long-tenn exposure of polymeric composite materials to extreme-use environments, such as pressure, temperature, moisture, and load cycles, results in changes in the original properties of the material. In this study, the effect of combined environmental factors such as ultraviolet ray, high temperature and high moisture on mechanical and thermal analysis properties of glass fabric and phenolic composites are evaluated through a 2.5 KW accelerated environmental aging tester. The environmental factors such as temperature, moisture and ultraviolet ray applied of specimens. A xenon-arc lamp is utilized for ultraviolet light and exposure time of up to 3000 hours are applied. Several types of specimens - tensile, bending, and shear specimens that are warp direction and fill direction are used to investigate the effects of environmental factors on mechanical properties of the composites. Mechanical degradations for tensile, bending and shear properties are evaluated through a Universal Testing Machine (UTM). Also, storage shear modulus, loss shear modulus and tan a are measured as a function of exposure time through a Dynamic Mechanical Analyzer (DMA). From the experimental results, changes in material properties of glass fabric and phenolic composites are shown to be slightly degraded due to combined environmental effects.

  • PDF

Development of Portable Boiler Tube Health Evaluation System (휴대용 보일러튜브 건전성 평가시스템 개발)

  • Chang Min Lee;Han Sang Lee;Bum Shin Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.101-108
    • /
    • 2023
  • Although the proportion of coal-fired power generation is decreasing, efficient operating technology is needed to continuously invest in facilities and reduce maintenance costs until it is abolished. Boilers, one of the main facilities of power plants, operate for a long time in harsh environments of high temperature and high pressure. In addition, damage due to deterioration is likely to occur depending on the fuel and tube material used. It is very important to judge soundness because damage caused by deterioration adversely affects facility operation. Previously, replication method was used to analyze the progress of deterioration. In the replication method, pre-treatment such as chemical treatment is performed on the boiler tube in the field, the area is reproduced by attaching a film, and the replicated film is determined by an expert in the laboratory with an expensive microscope. However, this method involves substantial costs and time requirements, as well as the possibility of human errors. To address these issues, we developed a mobile health assessment system in this research. Since it is detachable and takes images in real time, this system enables swift evaluations across a broad range and facilitates the assessment of preprocessing quality. In addition, it was intended to reduce existing human mistakes by developing a degradation classification algorithm using the merger cluster method.

Effects of Venesection at the Sybsun-points on Blood Pressure and Body Temperature and Pulse Rate in Humans (남녀 대학생에서 십선혈(十宣穴) 사혈(瀉血)이 혈압, 체온 및 맥박수에 미치는 영향)

  • Lee, Dong-Gun;Jeong, Won-Je;Lee, Hyun-Jin;Cho, Hyun-Seok;Kim, Kyung-Ho;Kim, Kap-Sung
    • Journal of Acupuncture Research
    • /
    • v.25 no.4
    • /
    • pp.51-58
    • /
    • 2008
  • Objectives : Sypsun-points are located at the tips of all fingers, 0.1 chon(寸) from the finger nails, totaling 10 points on both hands. These points have been used for emergency care, fainting, epilepsy, cerebrovascular accidents, hypertension, unconsciousness, high fever etc. in oriental medicine. The most common technique is bleeding with a needle at these points. We investigated whether Venesection at the Sybsun-points has effects on blood pressure and body temperature and pulse rate in humans aged from 20 to 30 who had no specific past history and whose vital signs are in normal range. Methods : 67 persons were studied from March to June 2008. They were composed of Sample group(n=36) and Normal group(n=31). Both two groups kept a steady state an hour before venesection. In both group, we checked blood pressure and body temperature and pulse rates 6 times( 30min. before and just before treatment, and just after, 30, 60, 90min after treatment). All study environments were same between sample and normal group. But only, normal group didn't carry out venesection at the Sybsun-points. Results : In a comparison of before and after venesection at the Sybsun-points, any Statistical significance was not evaluated. Though pulse rate in sample group was significantly decreased after venesection(p<0.05), it has no statistical significance because normal group's pulse rate was also significantly decreased and between two groups had no statistical difference. Conclusions : Though further study is needed, our findings suggest that venesection at the Sybsun-points has no significant effect on blood pressure and body temperature, and pulse rate in humans who had no specific past history and whose vital signs are in normal range. Also in that case, we may know that pain and tension result from venesection at the Sybsun-points have no significant effect on blood pressure and body temperature and pulse rate.

  • PDF