• 제목/요약/키워드: High pressure diesel engine

검색결과 317건 처리시간 0.027초

나노금속분말 윤활제를 적용한 산업용 디젤엔진의 성능 (The Performance of a Diesel Engine Using Lubricant Containing Nano-metal Powder)

  • 박권하;최재성;김대현;김영남
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권5호
    • /
    • pp.670-676
    • /
    • 2008
  • A diesel engine requires a high Performance of lubrication because of the extreme conditions such as high temperature and pressure during combustion process in a cylinder. Many researches to improve the lubrication performance on the extreme condition have been executed. The lubricant oil suspended with nano-metal particles is the one of the measure. In this study, the nano-lubricant oil is applied on a commercial diesel engine, and the engine performance is tested. The results show the increase of maximum torque and the decrease of cylinder pressure, exhaust gas temperature, CO emission.

Numerical investigation of the high pressure selective catalytic reduction system impact on marine two-stroke diesel engines

  • Lu, Daoyi;Theotokatos, Gerasimos;Zhang, Jundong;Tang, Yuanyuan;Gan, Huibing;Liu, Qingjiang;Ren, Tiebing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.659-673
    • /
    • 2021
  • This study aims to investigate the impact of the High Pressure Selective Catalytic Reduction system (SCR-HP) on a large marine two-stroke engine performance parameters by employing thermodynamic modelling. A coupled model of the zero-dimensional type is extended to incorporate the modelling of the SCR-HP components and the Control Bypass Valve (CBV) block. This model is employed to simulate several scenarios representing the engine operation at both healthy and degraded conditions considering the compressor fouling and the SCR reactor clogging. The derived results are analysed to quantify the impact of the SCR-HP on the investigated engine performance. The SCR system pressure drop and the cylinder bypass valve flow cause an increase of the engine Specific Fuel Oil Consumption (SFOC) in the range 0.3-2.77 g/kWh. The thermal inertia of the SCR-HP is mainly attributed to the SCR reactor, which causes a delayed turbocharger response. These effects are more pronounced at low engine loads. This study supports the better understanding of the operating characteristics of marine two-stroke diesel engines equipped with the SCR-HP and quantification of the impact of the components degradation on the engine performance.

수소 혼소 디젤 기관의 성능 및 미립자상 물질의 배출 특성에 관한 연구 (A Study on the Performance and Particulate Emission Characteristics for the Hydrogen-Premixed Diesel Engine)

  • 채재우;한동성;이상만;전영남;정영식
    • 한국자동차공학회논문집
    • /
    • 제1권2호
    • /
    • pp.34-41
    • /
    • 1993
  • In order to reduce harmful substances such as particulates and nitric oxides emitted from diesel engine, man kinds of methodology like high pressure spray of diesel fuel oil, exhaust gas recirculation, emulsified fuel usage and dual fuelling have been studied. Dual fuelling of a diesel engine with hydrogen which is well-known as the clean fuel and has excellent combustibility is expected to be effective in reducing harmful substances from diesel engine. This experimental study was conducted to investigate the effect of premixed hydrogen with intake air on the performance and particulate emission characteristics using a single cylinder, prechamber type diesel engine. As a result, it was clarified that a hydrogen-premixed diesel engine can be operated in the state of lower particulate emission and slightly aggravated fuel economy, compared with the conventional diesel engine.

  • PDF

LPL EGR System 적용 대형 디젤엔진의 EURO-5 NOx 규제대응에 관한 연구 (Study on Low Pressure Loop EGR System for Heavy-duty Diesel Engine to Meet EURO-5 NOx Regulation)

  • 이교승;백문열;박형배
    • 동력기계공학회지
    • /
    • 제11권4호
    • /
    • pp.12-17
    • /
    • 2007
  • Recently, many small and medium size diesel vehicles have been equipped with turbocharger and EGR system to get high performance and reduce $NO_x$ emissions but its application to heavy-duty diesel engine is not common yet. In this work, the simulation model for EURO-3 engine was developed using WAVE and then its performance and emission level were verified by comparing with experimental results. The possibility of current EURO-3 engine equipped with LPL EGR system which would be satisfied the EURO-5 regulation are examined. ESC 13 mode was chosen as the primary engine test mode, and the injection timing and fuel quantity were changed to compensate the lost engine performance caused by EGR. The system developed in this study shows that the current EURO-3 engine could satisfy EURO-5 $NO_x$ regulation by applying LPL EGR.

  • PDF

DME 연료 디젤엔진의 연소 및 공해물질 배출 특성 해석 (Numerical Studies on the Combustion Characteristics and Pollutant Formation for the DME Fueled Diesel Engine)

  • 유용욱;이정원;김용모
    • 한국분무공학회지
    • /
    • 제13권1호
    • /
    • pp.28-33
    • /
    • 2008
  • The present study is mainly motivated to investigate the vaporization, auto-ignition and combustion processes in high-pressure diesel engines. In order to realistically simulate the dimethyl ether (DME) fueled diesel engine, the high pressure vaporization model is utilized and the interaction between turbulence and chemistry is treated by employing the Representative Interactive Flamelet (RIF) model. The detailed chemisty consisted of 336 elementary reaction steps and 78 species is used for DME/air reaction. Numerical results indicate that the RIF model with high pressure vaporization model successfully predicts the essential feature of the combustion processes and pollutants formations in the DME fueled diesel engines.

  • PDF

균일 예혼합 압축 착화 디젤 엔진의 성능 및 배출물 특성에 미치는 Cooled-EGR 효과 (Effect of Cooled-EGR on the Characteristics of Performance and Exhaust in a HCCI Diesel Engine)

  • 이창식;윤영훈;김명윤
    • 한국자동차공학회논문집
    • /
    • 제13권5호
    • /
    • pp.35-41
    • /
    • 2005
  • The effects of cooled-ECR on the characteristics of combustion and exhaust emissions were investigated in a single cylinder HCCI diesel engine The premixed charge (gasoline or diesel) was obtained with premixing chamber and high-pressure (5.5MPa) injection system. Exhaust pressure control and cooled ECR system were used in order to reduce pressure fluctuation and to mix the exhaust gas well with the fresh intake air. The experimental results show that NOx emissions from conventional diesel engine are steeply decreased by HCCI diesel combustion with cooled-EGR in both case of gasoline and diesel premixing. But soot emissions are rapidly increased with the increase of ECR rate. The recycled exhaust gas increased the ignition delay of mixture and decreased maximum combustion pressure. HC and CO emissions of HCCI combustion are increased with ECR rate.

디젤엔진에서 경유-CNG 혼합 연소의 성능 및 배기 특성 (Performance and Emission Characteristics of Dual-fuel(Diesel-CNG) Combustion in a Diesel Engine)

  • 유경현;박진철;최규호
    • 한국자동차공학회논문집
    • /
    • 제18권4호
    • /
    • pp.132-139
    • /
    • 2010
  • This paper describes an investigation of the performance and emission characteristics of a commercial cylinder direct injection diesel engine operating on natural gas with pilot diesel ignition. Engine tests for variations in the pilot injection timing were performed at an engine speed of 1500 rpm. This study showed that the performance of the dual-fuel diesel engine increased as the engine load increased and as the pilot diesel injection timing angle advanced. The peaks of cylinder pressure, pressure rise rate, and heat release rate all increased while the fuel ignition timing advanced with the pilot injection timing. The engine operation was stable, and the least smoke was produced at a pilot injection timing of $12^{\circ}$ before top dead center. NOx emissions were only exhausted under high-load conditions, and they increased as the pilot injection timing angle advanced.

디젤엔진 연료계통의 유동 및 압력 변동특성에 관한 이론적 연구 (A Theoretical Study on Flow and Pressure Variation Characteristics of Fuel Supply System in Diesel Engine)

  • 송치성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제17권3호
    • /
    • pp.12-23
    • /
    • 1993
  • Combustion phenomenon in diesel engine is mainly governed by characteristics of fuel injection and fuel spray system affected by its dimensions and operating condition. Fuel supply system is consisted of fuel injection pump, high pressure pipe and injection nozzle. In order to develope the more economical diesel fuel injection system, it is in need to carryout the fairly wide range experiments, which is quite impossible. Therefore, theoretical analysis for the numberous parameters is powerful method in this case. In the present study, equations of continuity of fuel oil in fuel injection system are solved to obtain the flow and pressure variation in diesel fuel system affected by injection pump speed, plunger diameter, pipe length and nozzle opening pressure.

  • PDF

터보과급 디이젤기관의 성능에 관한 실험적 연구 (An Experimental Study on the Performance of Turbocharged Diesel Engine)

  • 채재우;정성찬;백중현
    • 한국자동차공학회논문집
    • /
    • 제2권6호
    • /
    • pp.76-86
    • /
    • 1994
  • Combustion of diesel engine depends on the mixing of air and evaporating fuel during ignition delay greatly. Variation of air-fuel mixing rate and ignition delay for engine operating condition causes difference of combustion, performance and exhaust emissions. This study is investigated in a turbocharged diesel engine of IDI swirl chamber type. In the results, As injection timing is advanced until $12.6^{\circ}$ BTC, ignition delay decreases. NOx concentration and smoke level in exhaust gas increases for advanced injection timing Ignition delay, combustion period, pressure rise rate and exhaust gas temperature are increased with increasing engine speed. And ignition delay at high load is more decreased than that at low load. Ignition delay and combustion period are decreased with increasing intake pressure. Power increases, temperature and CO, NOx concentration in exhaust gas decreases as intake pressure increases. With increasing load, ignition delay is decreased and combustion period, motoring pressure are increased.

  • PDF

흡.배기를 고려한 고팽창 저속 디젤 기관의 이론 해석과 기관 성능에 대한 연구 (A Study on the Theory Analysis and Engine Test Performance by a High Expansion Diesel Engine into Intake-Exhaust Consideration)

  • 장태익
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권8호
    • /
    • pp.1141-1148
    • /
    • 2008
  • One of the methods to increase the efficiency of an engine is to expand pressures obtained from combustions equal to the pressure of atmosphere as much as possible and then convert thermal energy into mechanical energy also as much as possible. In this research, the Diesel cycle was thermodynamically interpreted to evaluate the possibility of high efficiency by converting Diesel engines to the Atkinson cycle, and general cycle features were analyzed after comparing these two cycles. In the case of fuel air the Diesel-Atkinson cycle considering intake and exhaust similar to real cycles, the value of thermal efficiency and average effective pressure increased, though their values were smaller than those of standard air amount cycle, when expansion compression ratio increased. When normal Diesel engines of which compression stroke and expansion stroke are all the same, was converted to the Atkinson cycle by changing the time of intake value close, combustion pressure reduced due to reduced expansion compression ratio and intake air amount due to decreased effective cycle volume.