• 제목/요약/키워드: High precision stage

검색결과 293건 처리시간 0.033초

고속 세틀링과 고정밀 위치 제어를 위한 모드 변경 제어 기법 (A New Mode Switching Control for Fast Settling and High Precision Positioning)

  • 김정재;최영만;김기현;권대갑;홍동표
    • 반도체디스플레이기술학회지
    • /
    • 제5권4호
    • /
    • pp.1-4
    • /
    • 2006
  • Recently, with rapid development of digital media like semiconductor and large flat panel display, the manufacturing equipment is required to have high precision over large travel range. Moreover it should have high product throughput. To achieve high product throughput, a controller should perform fast point-to-point motion and high precision positioning after settling in spite of external disturbances or residual vibrations. We proposed a new mode switching control algorithm with an application to dual stage for long range and high precision positioning. The proposed algorithm uses a proximate time-optimal servomechanism for the fast settling and a time-delay controller for the high precision positioning. Experimental results show that the proposed method enables smooth mode switching and improves the settling time and the precision accuracy after settling by over than 33% and 45%, respectively.

  • PDF

DTM가공을 위한 2축 Stage의 정밀 이송특성연구 (Positioning control error of 2-Axis Stage for Diamond Turning Machine)

  • 이응석;박종진;이민기
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.309-312
    • /
    • 2005
  • DTM (Diamond Turning Machine) is using for ultra precision manufacturing such as, plastic lens die or aspherical optics. This study is on a design of precision 2-axis stage for DTM. We designed and manufactured a back lash free stage using different weights and measured the positioning accuracy using Interferometer. Also, the 2-D moving accuracy is measured using the high magnification CCD technique. Then, the stage is tested with the machining of spherical and aspherical lens in a DTM with air bearing spindle. It was shown that the back lash free stage is effective for improving the positioning accuracy. Also, positioning control errors in motion control board were able to be found using the proposed stages system.

  • PDF

A Precision Micro-Positioning System by Using Hinge Mechanism

  • Choi, Hyeun-Seok;Lee, Hak-Joon;Han, Chang-Soo;Kim, Seung-Soo;Kim, Eung-Zu;Choi, Tae-Hoon;Na, Kyoung-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1344-1348
    • /
    • 2003
  • A precision micro-positioning system with a high displacement resolution and wide motion range has been required for industrialized applications in variety fields. This paper discusses the design of a precision micro-rotation stage with flexure hinges. Proposed system is applied to grinding machine for micro parts. Rotational motion is generated with this system. For this systems having a full rotation motion with high precision, a dual servo system with a coarse stage and a fine stage is proposed.

  • PDF

진공환경용 공기베어링의 Leakage 해석 (Leakage Analysis of Air Bearing for Vacuum Environment)

  • 김경호;박천홍;이후상;김승우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.912-915
    • /
    • 2004
  • A vacuum environment is very important for NGL(Next Generation Lithography) apparatuses such as EUVL(Extreme Ultra Violet Lithography) or EPL(Electron Projection Lithography) and so on. The performance of these systems is dominated by vacuum level of processing and positioning accuracy of a stage. So, ultra-precision stage usable in a high vacuum level is needed for the improved performance of these devices. In contrast to atmospheric condition, a special attention must be paid to guide bearing, actuator and other elements. In this paper, air bearing is adopted because of its very high motional accuracy. So, air bearing is designed to be vacuum compatible using differential exhaust method, which prevents air from entering into vacuum chamber. For this, leakage analysis is performed theoretically and verified from experiment.

  • PDF

플렉셔 힌지 기반 6-자유도 초정밀 위치 결정 스테이지의 기구학 해석 (Kinematic Analysis of a 6-DOF Ultra-Precision Positioning Stage Based on Flexure Hinge)

  • 신현표;문준희
    • 한국정밀공학회지
    • /
    • 제33권7호
    • /
    • pp.579-586
    • /
    • 2016
  • This paper describes kinematic analysis of a 6-degrees-of-freedom (DOF) ultra-precision positioning stage based on a flexure hinge. The stage is designed for processes which require ultra-precision and high load capacities, e.g. wafer-level precision bonding/assembly. During the initial design process, inverse and forward kinematic analyses were performed to actuate the precision positioning stage and to calculate workspace. A two-step procedure was used for inverse kinematic analysis. The first step involved calculating the amount of actuation of the horizontal actuation units. The second step involved calculating the amount of actuation of the vertical actuation unit, given the the results of the first step, by including a lever hinge mechanism adopted for motion amplification. Forward kinematic analysis was performed by defining six distance relationships between hinge positions for in-plane and out-of-plane motion. Finally, the result of a circular path actuation test with respect to the x-y, y-z, and x-z planes is presented.

초정밀 마이크로 위치결정 스테이지의 제작 및 평가 (Experiment of the Precision micro-positioning stage)

  • 한창수;백석;노명규;이찬홍
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.244-247
    • /
    • 2002
  • The performance of the precision micro-positioning 4-dof stage is presented. The compact design utilizes the monolithic mechanism to achieve the translation in the Z axis and rotation in the $\theta$ z, $\theta$ x and $\theta$ y axes with high stiffness and high damping. Hysteresis, nonlinearity, and drift of the piezoelectric effects are improved by incorporating the sensors in a feedback control. Experiments demonstrate that the micro-positioning stage is capable of 2nm resolution over the travel range of 25$\mu\textrm$ m in the Z axis, 0.0l7 $\mu\textrm$ rad resolution over the 170$\mu\textrm$ rad in the $\theta$ z and 0.011 $\mu\textrm$ rad resolution over the $\mu\textrm$ rad in the $\theta$ x and $\theta$ y axes. The cross-axis interferences among the axes are at a noise range. This stage is available for positioning error compensation of the XY stage with large stroke.

  • PDF

대칭구조 철심형 리니어모터 이송계에서의 코깅현상에 관한 연구 (Investigation of Cogging Effect in Bisymmetric Dual Iron Core Linear Motor Stage)

  • 오정석;박천홍
    • 한국정밀공학회지
    • /
    • 제25권10호
    • /
    • pp.115-121
    • /
    • 2008
  • This paper presents bisymmetric dual iron core lineal motor stage for heavy-duty high precision applications such as large area micro-grooving machines or high precision roll die machines. In this stage, two iron core linear motors are installed in laterally symmetric way to cancel out the attractive forces. Main focus was given to analyzing the effect of cogging force and moment for two different layouts, which are symmetric and half-pitch shifted ones. Experimental results showed that the symmetric layout is more adequate for high precision applications because of its clear moment cancellation effect. It was also verified that the effect of the residual cogging moment can be suppressed further by increasing the bearing stiffness. One problem of the symmetric layout is added cogging force which hinders smooth motion, but its effect was relatively small compared with that of moment cancellation.

십자형 플렉셔 힌지를 갖는 압전소자 구동형 회전 스테이지의 해석 (Analysis of a Rotation Stage with Cartwheel-type Flexure Hinges Driven by a Stack-type Piezoelectric Element)

  • 최기봉;이재종;김민영;고국원
    • 한국정밀공학회지
    • /
    • 제24권12호
    • /
    • pp.88-94
    • /
    • 2007
  • A flexure hinge-based compliant stage driven by stack-type piezoelectric elements has high precision motion but small operational range due to the characteristics of the piezoelectric element. Since the common flexure hinges can be broken by excessive deflection when the displacement is amplified by a high amplification ratio, a flexure hinge mechanism for large deflection is required. A cartwheel-type flexure hinge has an advantage of larger deflection compared with the common flexure hinges. This study presents a rotation stage with cartwheel-type flexure hinges driven by a stack-type piezoelectric element. The characteristics and the performance of the rotation stage are described by the terms of principal resonance frequency, amplification ratio of rotational displacement, maximum rotational displacement and block moment, in which the terms are analyzed by geometric parameters of the rotation stage. The analyzed results will be used as the guideline of the design of the rotation stage.

LCD 대평판 고정밀 얼라인먼트를 위한 비전 시스템 연구 (A Study on Vision System for High Precision Alignment of Large LCD Flat Panel Display)

  • 조성만;송춘삼;김준현;김종형
    • 제어로봇시스템학회논문지
    • /
    • 제15권9호
    • /
    • pp.909-915
    • /
    • 2009
  • This work is to develop a vision system for high precision alignment between upper and lower plates required at the imprinting process of the large LCD flat panel. We compose a gantry-stage that has highly repeated accuracy for high precision alignment and achieves analysis about thermal transformations of stage itself. Position error in the stage is corrected by feedback control from the analysis. This system can confirm alignment mark of upper and lower plates by using two cameras at a time for the alignment of two plates. Pattern matching that uses geometric feature is proposed to consider the recognition problem for alignment mark of two plates. It is algorithm to correct central point and angle for the alignment from the recognized mark of upper and lower plates based on the special characteristics. At the alignment process, revision for error position is performed through Look and Move techniques.

고진공 환경용 공기베어링이 적용된 직선, 회전스테이지의 구동에 의한 압력증가 특성분석 (Analysis on the Pressure Rise Characteristics Caused by Movement of Linear and Rotary Stages using Air Bearings in High Vacuum Environment)

  • 김경호;박천홍
    • 한국정밀공학회지
    • /
    • 제26권8호
    • /
    • pp.112-118
    • /
    • 2009
  • A pressure rise is generated while air bearing stages are moving in high vacuum environment. This study analyzed this pressure rise phenomenon theoretically and verified it experimentally using two different kinds of stages - linear and rotary air bearing stages. Results indicate that the pressure rise was caused by additional leakage resulting from stage velocity, along with adsorption and outgassing of gas molecules from the guide rail surface. Though tilting of the stage due to acceleration and deceleration reached several micrometers, it had a negligible effect on pressure rise because the tilting time was very short. Therefore, a rotary air bearing stage showed much less pressure rise than a linear stage because the rotary stage theoretically has nothing to do with the above causes. Additional leakage caused by stage velocity was inevitable if the stage had movements, but pressure rise caused by adsorption and outgassing could be suppressed by improving the surface quality to reduce real surface area, and by coating the guide rail surface with titanium nitride (TiN) which has less adhesion probability of gas molecules. The results also indicate that the pressure rise increased when the air bearing stage operated under high vacuum conditions.