• Title/Summary/Keyword: High precision reduction

Search Result 294, Processing Time 0.028 seconds

Fabrication and Characterization of Porous Nickel Membrane for High Precision Gas Filter by In-situ Reduction/Sintering Process (In-situ 환원/소결법을 이용한 다공성 니켈 멤브레인 가스필터의 제조 및 평가)

  • Kim, Nam-Hoon;Song, Han-Bok;Choi, Sung-Churl;Choa, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.16 no.4
    • /
    • pp.262-267
    • /
    • 2009
  • Disk type porous nickel membrane was fabricated by in-situ reduction/sintering process using compacted NiO/PMMA (PMMA; Polymethyl methacrylate) mixture at $800^{\circ}C$ in hydrogen atmosphere. The porosity (49$\sim$58%) of these membrane was investigated as an amount of PMMA additive. The thermal decomposition and reduction behavior of NiO/PMMA were analyzed by TG/DTA in hydrogen atmosphere and the activation energy for the hydrogen reduction of NiO and thermal degradation of PMMA was calculated as 61.1 kJ/mol, evaluated by Kissinger method. Finally, the filtering performance and pressure drop were measured by particle counting system.

Solar Tracking Performance using a Heliostat and Uniform Irradiation of LED Light for a Plant Factory (식물공장의 헬리오스탯을 이용한 태양광 추적성능 및 LED 균일광 조사)

  • Koo, Kyung-Wan;Kim, Tae-Jin;Kim, Youngshik;Ryu, Bong-Jo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1761-1767
    • /
    • 2015
  • This paper deals with the solar tracking performance using a small heliostat, the light reduction rate of the sun light, and the performance of uniform irradiation of LED light for a plant factory. A high precision encoder is attached to the heliostat to improve tracking accuracy. As a result, our heliostat-based solar tracking systems track efficiently the movement of the sun light in experimental tests. The reduction rate of the sun light in the plant factory is then measured by using an illumination sensor. The average reduction rate is 4.29%, which represents lower light reduction rates. In uniform irradiation tests of LED light, sixteen points are measured, and overall deviations of irradiation were within eight percents.

A Research on the Manufacturing Process Improvement of High-Precision Parts for Precision Guided Missile (유도무기용 소형 정밀부품 제조공법 개선에 관한 연구)

  • Kim, Kyu-Young;Seo, Jung-Hwa;Kim, Kyoung-Rok;Kim, Bo-Ram
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.1-9
    • /
    • 2020
  • The manufacturing processes of high-precision parts for PGM (Precision Guided Missiles) have not been improved for decades; they still depend on machining or high-precision casting. These processes have an advantage when making small amounts of high-reliability parts in the usual case of a PGM system. In the case of a PGM system, however, which has been made for striking an extensive area, requires hundreds of bomblet units that require mass productivity. In addition, in the case of a part that is very difficult to machine, mass productivity and quality cannot be satisfied at the same time. In particular, cost reduction is an essential precondition to strengthening the export competitiveness of Korean defense articles. This study examined whether the MIM process is appropriate for manufacturing high-precision parts that require mass productivity. The optimized MIM process condition was determined after carrying out fundamental research. Comparisons of the quality of prototype parts with original parts and a functional test of a fuse that had been made with MIM parts highlighted the application possibility of the MIM process.

Development of Thermal Monitoring System for Inspection of Railway Components (철도차량 하부부품 열화상 모니터링 시스템 개발)

  • Seo, Jung-Won;Kwon, Seok Jin;Kim, Hyeong-Jin;Lee, Chan-Woo;Kim, Min-Su;Ham, Young-Sam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.7
    • /
    • pp.687-693
    • /
    • 2013
  • The service conditions of railway cars have become more difficult in recent years due to increased speed. Faulty components in the railcars may result in service interruption, or in extreme cases, derailment. Thus, it is important to diagnose and monitor the main components of railcars. Temperature monitoring is one of the basic methods used to diagnose abnormal conditions in the main components of railway cars, such as in bearings, reduction gears, and traction motors. In this study, we developed a monitoring system for the main components, using an infrared thermography technique. This technique has the advantage of infrared thermal camera imaging of temperature contours in the components. Various hardware and software components of the monitoring system are used to acquire the sensor data, to identify potential problems in railcar operation.

A Study on the Optimum Design of Cylinder Block in Swash Plate Type Oil Hydraulic Piston Pump

  • Baek, Il-Hyun;Cho, Ihn-Sung;Jung, Jae-Youn;Choi, Byung-In;Oh, Seok-Hyung
    • KSTLE International Journal
    • /
    • v.8 no.2
    • /
    • pp.29-34
    • /
    • 2007
  • Recently, requirements relating to performance, environment and noise in the oil hydraulic system of the heavy construction equipment have been reinforced continuously. In order to solve these technical trends, studies on the system compactness, operation under high pressure and great rotating speed, electronic control, substitute oil, and noise reduction have been progressed briskly. Among these recent studies, the system operation under high pressure is quite difficult to carry into effect due to mechanical limitations; that is, for realizing the system operation in the hydraulic pump under high pressure, the improvements or innovations on the design techniques, the manufacturing techniques, and the lubrication performance of the working oil are required. Accordingly, in this study, the stress distribution and optimum design factors under the maximum pressure were discussed by using stress analysis on the cylinder block of the hydraulic axial piston pump, which is one of the most important relative sliding regions.

Thermal Expansion Coefficient Measurement of STS430 at High Temperature by In-plane ESPI (In-plane ESPI를 이용한 고온에서 STS430의 열팽창계수 측정)

  • 김경석;강기수;장호섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.69-74
    • /
    • 2004
  • This paper presents ESPI system for the measurement of thermal expansion coefficient of STS430 up to 1,00$0^{\circ}C$ . Existing methods, strain gauge and moire have the limitation of contact to object and do not supply the coefficient up to 80$0^{\circ}C$ . There needs to measure the data up to 80$0^{\circ}C$, because heat resistant materials have high melting temperature up to 1,000'E In previous studies related to thermal strain analysis, the quantitative results have not reported by ESPI at high temperature, yet. In-plane ESPI and vacuum chamber for the reduction of air turbulence and oxidation are designed for the measurement of the coefficient up to 1,00$0^{\circ}C$ and speckle correlation fringe pattern images are processed by commercial image filtering tool-smoothing, thinning and enhancement- to obtain quantitative results, which is compared with references data. The comparison shows two data are agreed within 4.1% blow $600^{\circ}C$ however, there is some difference up to $600^{\circ}C$. Also, the incremental ratio of the coefficient is changed up to 80$0^{\circ}C$ . The reason is the phase transformation of STS430 probably begins at 80$0^{\circ}C$

Prototype Manufacturing Using 3D Printing and Characteristics of Flow Rate and Dynamics for High Temperature Solenoid Valve (3D 프린팅을 이용한 고온용 솔레노이드 밸브의 시제품 제작 및 유량과 동적특성 평가)

  • Yi, Hyung Wook;Lee, Yong Moon;Shin, Bo Sung;Lee, Tae Gu;Kang, Myung Chang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.5
    • /
    • pp.341-348
    • /
    • 2016
  • The solenoid valve is used widely across various industries; however, solenoid valves for use in high-temperature environments have to be highly specified, such as those used in thermal power plants and steel mills. As such, we have developed a solenoid valve, using an already developed solenoid, to allow for more specific use. In this type of development method, use of 3D printing is very effective, allowing for a reduction in errors in design and production. This study includes a mathematical model of the solenoid valve. Then, the simulation from the mathematical model was performed using the AMESim (Advanced Modeling Environment for Simulation of Engineering Systems). We made a prototype valve using the simulation results and also measured the flow rate and dynamic performance.

Evaluation on the Cooling Performance to Design Heat sinks for LED lightings (LED 조명용 히트싱크 방열기 설계를 위한 냉각성능 평가)

  • Jung, Tae-Sung;Kang, Hwan-Kook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.7
    • /
    • pp.778-784
    • /
    • 2012
  • In comparison with some other light sources, LED has merits such as increased life expectancy, fast response, pollution free, and high energy efficiency. Lately, due to development of LED with high brightness and capacity, LED has widely used in many industrial fields such as automotive, aviation, display, transportation and special lighting applications. Since the high heat generation of LED chips can cause a reduction in lifetime, degradation of luminous efficiency, and variation of color temperature, studies have been carried out on the optimization of LED packaging and heat sinks. In this study, experiments on measuring the heat generation rate of LED and the cooling performance of a heat sink were carried for analyzing the thermal characteristics of LED lighting system in free convection. From the results, dimensionless correlation on the cooling performance of heat sink in natural convection was proposed with Nusselt number and Rayleigh number as a guideline for designing cooling device of LED lightings.

Experimental Implementation of Continuous GPS Data Processing Procedure on Near Real-Time Mode for High-Precision of Medium-Range Kinematic Positioning Applications (고정밀 중기선 동적측위 분야 응용을 위한 GPS 관측데이터 준실시간 연속 처리절차의 실험적 구현)

  • Lee, Hungkyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.31-40
    • /
    • 2017
  • This paper deals with the high precision of GPS measurement reduction and its implementation on near real-time and kinematic mode for those applications requiring centimeter-level precision of the estimated coordinates, even if target stations are a few hundred kilometers away from their references. We designed the system architecture, data streaming and processing scheme. Intensive investigation was performed to determine the characteristics of the GPS medium-range functional model, IGS infrastructure and some exemplary systems. The designed system consisted of streaming and processing units; the former automatically collects GPS data through Ntrip and IGS ultra-rapid products by FTP connection, whereas the latter handles the reduction of GPS observables on static and kinematic mode to a time series of the target stations' 3D coordinates. The data streaming unit was realized by a DOS batch file, perl script and BKG's BNC program, whereas the processing unit was implemented by definition of a process control file of BPE. To assess the functionality and precision of the positional solutions, an experiment was carried out against a network comprising seven GPS stations with baselines ranging from a few hundred up to a thousand kilometers. The results confirmed that the function of the whole system properly operated as designed, with a precision better than ${\pm}1cm$ in each of the positional component with 95% confidence level.

Manufacture of light-weight machine tool structures using composite materials (복합재료를 이용한 경량 공작기계 구조물 제작에 관한 연구)

  • Suh, Jung-Do;Lee, Dai-Gil;Kim, Hak-Sung;Kim, Jong-Min;Choi, Jin-Kyung
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.189-196
    • /
    • 2001
  • Machine tools of high-speed and high-precision are required for various fields of industry such as semiconductor, automobile, mold fabrication and so on. Light-weight machine tool structure is essential for reduction of production time through rapid transportation. Also, high damping capacity of the structure is required to obtain precise products without vibration during manufacturing. Composite materials have high potential for machine tool structures due to its high specific stiffness and good damping characteristics. In this study, the design and the manufacture of a hybrid machine tool structure using composite materials was attempted and the damping capacity was investigated experimentally.

  • PDF