• Title/Summary/Keyword: High precision digital map

Search Result 32, Processing Time 0.023 seconds

Design of an Information System Prototype for Generating and Linking Ultra-precision Digital Maps of Construction Sites (건설 현장의 초정밀 디지털 맵 생성 및 연계를 위한 정보체계 프로토타입 설계)

  • Kim, Jong-Hyeop;Yeom, Dong-Jun;Ko, Hyun-A;Kang, Tai-Kyung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.1015-1024
    • /
    • 2020
  • By nature, smart construction technology is a convergence technology, therefore aptly constructing and running an information system is needed in order to effectively develop and maintain it. Thus, in this study, an information system prototype was developed for the creation and linking of high precision digital maps at road construction sites for the effective performance of the development of the Information Collecting and Analyzing Techniques in the Construction Site (ICAT). For this, (1) defined input/output (I/O) data of each technical detail of ICAT, (2) analyzed the data flow, (3 ) proposed an information system prototype for high precision digital maps development and connection. Based on the information system prototype constructed in this study, it was inferred that each technique and its information for the Smart Construction Technique Development Business was in a consistent flow. Developed information system prototype would enable effective cooperation between subjects directly involved in the technique development, by defining I/O data in advance. Moreover, it would be of value to practitioners for refining the output data from each technique, thereby linking databases and forming Entity Relationship Diagram.

Analysis of Land Cover Change in the Waterfront Area of Taehwa River using Hyperspectral Image Information (초분광 영상정보를 이용한 태화강 수계지역의 토지피복 변화분석)

  • KIM, Yong-Suk
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.1
    • /
    • pp.12-25
    • /
    • 2021
  • Land cover maps are used in various fields in urban expansion and development. This study analyzed the amount of land cover change over time using multi-sensor information, focusing on the waterfront area of the Taehwa River. In order to apply high-accuracy aerial hyperspectral images, patterns with Field-spectral were reviewed and compared with time series Digital map. The hyperspectral image was set as 13 land cover grades, and the time series digital map was classified into 7 and the waterfront area was classified into 5-6 grades and analyzed. As a result of analysis of the change in land cover of the digital map from the 1990s to 2010, it was found that forest areas were rapidly decreasing and Farmland and grassland were becoming urban. As for the land cover change(2010~2019) in the waterfront area(set 500m) analyzed through hyperspectral images, it was found that Farmland(1.4㎢), Forest(1.0㎢), and grassland (0.8㎢) were converted into urbanized and dried areas, and urbanization was accelerating around the Taehwa River waterfront. Recently, a lot of research has been conducted on the production of land cover maps using high-precision satellite images and aerial hyperspectral images, so it is expected that more detailed and precise land cover maps can be produced and utilized.

Land Cover Object-oriented Base Classification Using Digital Aerial Photo Image (디지털항공사진영상을 이용한 객체기반 토지피복분류)

  • Lee, Hyun-Jik;Lu, Ji-Ho;Kim, Sang-Youn
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.1
    • /
    • pp.105-113
    • /
    • 2011
  • Since existing thematic maps have been made with medium- to low-resolution satellite images, they have several shortcomings including low positional accuracy and low precision of presented thematic information. Digital aerial photo image taken recently can express panchromatic and color bands as well as NIR (Near Infrared) bands which can be used in interpreting forest areas. High resolution images are also available, so it would be possible to conduct precision land cover classification. In this context, this paper implemented object-based land cover classification by using digital aerial photos with 0.12m GSD (Ground Sample Distance) resolution and IKONOS satellite images with 1m GSD resolution, both of which were taken on the same area, and also executed qualitative analysis with ortho images and existing land cover maps to check the possibility of object-based land cover classification using digital aerial photos and to present usability of digital aerial photos. Also, the accuracy of such classification was analyzed by generating TTA(Training and Test Area) masks and also analyzed their accuracy through comparison of classified areas using screen digitizing. The result showed that it was possible to make a land cover map with digital aerial photos, which allows more detailed classification compared to satellite images.

Development of the Precision Image Processing System for CAS-500 (국토관측위성용 정밀영상생성시스템 개발)

  • Park, Hyeongjun;Son, Jong-Hwan;Jung, Hyung-Sup;Kweon, Ki-Eok;Lee, Kye-Dong;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.881-891
    • /
    • 2020
  • Recently, the Ministry of Land, Infrastructure and Transport and the Ministry of Science and ICT are developing the Land Observation Satellite (CAS-500) to meet increased demand for high-resolution satellite images. Expected image products of CAS-500 includes precision orthoimage, Digital Surface Model (DSM), change detection map, etc. The quality of these products is determined based on the geometric accuracy of satellite images. Therefore, it is important to make precision geometric corrections of CAS-500 images to produce high-quality products. Geometric correction requires the Ground Control Point (GCP), which is usually extracted manually using orthoimages and digital map. This requires a lot of time to acquire GCPs. Therefore, it is necessary to automatically extract GCPs and reduce the time required for GCP extraction and orthoimage generation. To this end, the Precision Image Processing (PIP) System was developed for CAS-500 images to minimize user intervention in GCP extraction. This paper explains the products, processing steps and the function modules and Database of the PIP System. The performance of the System in terms of processing speed, is also presented. It is expected that through the developed System, precise orthoimages can be generated from all CAS-500 images over the Korean peninsula promptly. As future studies, we need to extend the System to handle automated orthoimage generation for overseas regions.

Application of Magnetic Assisted Polishing for ELID Ground Surface of Aluminum Oxide Ceramics (알루미나 세라믹스 ELID연삭면의 자기연마 가공 특성)

  • Lee, Yong-Chul;Jung, Myung-Won;Kim, Tae-Kyu;Kwak, Tae-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1259-1264
    • /
    • 2013
  • This study has focused on the application of magnetic assisted polishing for ELID ground surface of aluminum oxide ceramics. Aluminum oxide ceramics has been widely used as advanced materials for electric, optic, mechanic, chemical usage and so on. In this study, ELID grinding and magnetic assisted polishing technology was adopted for high-effective manufacturing and high quality surface of ceramic parts. The characteristic of MAP machining have been evaluated by the value of surface roughness and surface profile before and after magnetic assisted polishing. As the results of experiments, the surface roughness after magnetic assisted polishing has shown a significant improvement and the surface roughness was more improved when the feed rate of tool became slow.

A Study on the Application Technique of 3-D Spatial Information by integration of Aerial photos and Laser data (항공사진과 레이져 데이터의 통합에 의한 3 차원 공간정보 활용기술연구)

  • Yeon, Sang-Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.3
    • /
    • pp.385-392
    • /
    • 2010
  • A LiDAR technique has the merits that survey engineers can get a large number of measurements with high precision quickly. Aerial photos and satellite sensor images are used for generating 3D spatial images which are matched with the map coordinates and elevation data from digital topographic files. Also, those images are used for matching with 3D spatial image contents through perspective view condition composed along to the designated roads until arrival the corresponding location. Recently, 3D aviation image could be generated by various digital data. The advanced geographical methods for guidance of the destination road are experimented under the GIS environments. More information and access designated are guided by the multimedia contents on internet or from the public tour information desk using the simulation images. The height data based on LiDAR is transformed into DEM, and the real time unification of the vector via digital image mapping and raster via extract evaluation are transformed to trace the generated model of 3-dimensional downtown building along to the long distance for 3D tract model generation.

GeoAI-Based Forest Fire Susceptibility Assessment with Integration of Forest and Soil Digital Map Data

  • Kounghoon Nam;Jong-Tae Kim;Chang-Ju Lee;Gyo-Cheol Jeong
    • The Journal of Engineering Geology
    • /
    • v.34 no.1
    • /
    • pp.107-115
    • /
    • 2024
  • This study assesses forest fire susceptibility in Gangwon-do, South Korea, which hosts the largest forested area in the nation and constitutes ~21% of the country's forested land. With 81% of its terrain forested, Gangwon-do is particularly susceptible to wildfires, as evidenced by the fact that seven out of the ten most extensive wildfires in Korea have occurred in this region, with significant ecological and economic implications. Here, we analyze 480 historical wildfire occurrences in Gangwon-do between 2003 and 2019 using 17 predictor variables of wildfire occurrence. We utilized three machine learning algorithms—random forest, logistic regression, and support vector machine—to construct wildfire susceptibility prediction models and identify the best-performing model for Gangwon-do. Forest and soil map data were integrated as important indicators of wildfire susceptibility and enhanced the precision of the three models in identifying areas at high risk of wildfires. Of the three models examined, the random forest model showed the best predictive performance, with an area-under-the-curve value of 0.936. The findings of this study, especially the maps generated by the models, are expected to offer important guidance to local governments in formulating effective management and conservation strategies. These strategies aim to ensure the sustainable preservation of forest resources and to enhance the well-being of communities situated in areas adjacent to forests. Furthermore, the outcomes of this study are anticipated to contribute to the safeguarding of forest resources and biodiversity and to the development of comprehensive plans for forest resource protection, biodiversity conservation, and environmental management.

Assessment of Possibility of Adopting the Error Tolerance of Geometric Correction on Producing 1/5,000 Digital Topographic Map for Unaccessible Area Using the PLEIADES Images and TerraSAR Control Point (PLEIADES 영상과 TerraSAR 기준점을 활용한 비접근지역의 1/5,000 수치지형도 제작을 위한 기하보정의 허용오차 만족 가능성 평가)

  • Jin Kyu, Shin;Young Jin, Lee;Gyung Jong, Kim;Jun Hyuk, Lee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.2
    • /
    • pp.83-94
    • /
    • 2015
  • Recently, the necessity of spatial data in unaccessible area was challenged to set up various plans and policies for preparing the unification and the cooperative projects between South-North Korea. Therefore, this paper planned to evaluate the possibility of adopting the error tolerance in Geometric correction for 1/5,000 digital topographic mapping, using the PLEIADES images and the TerraSAR GCPs (Ground Control Points). The geometric correction was performed by changing the number and placement of GCPs by GPS (Global Positioning System) surveying, as the optimal placement of 5 GCPs were selected considering the geometric stability and steady rate. The positional accuracy evaluated by the TerraSAR GCPs, which were selected by optimal placement of GCPs. The RMSE in control points were X=±0.64m, Y=±0.46m, Z=±0.28m. While the result of geometric correction for PLEIADES images confirmed that the RMSE in control points were X=±0.34m, Y=±0.27m, Z=±0.11m, the RMSE in check points were X=±0.50m, Y=±0.30m, Z=±0.66m. Through this study, we believe if spatial data can integrate with the PLEIADES images and the optimal TerraSAR GCPs, it will be able to obtain the high-precision spatial data for adopting the regulation of 1/5,000 digital topographic map, which adjusts the computation as well as the error bound.

Generation of the Ortho-Rectified Photo Map and Analysis of the Three-Dimensional Image Using the PKNU 2 Imagery (PKNU2호 영상을 이용한 정사영상 지도 제작 및 3차원 입체 분석)

  • Lee, Chang Hun;Choi, Chul Uong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.4
    • /
    • pp.77-87
    • /
    • 2004
  • It is important for hydrographers to extract the accurate cross section of a river for the hydrographical analysis of the topography. Aerial photographs were used to extract the cross section of a river for the advantages of the accuracy and economical efficiency in this study, while the direct measurement has been used in existing studies. An ortho-rectified photo map using imageries taken by the PKNU 2 (High-resolution, multi-spectral, aerial photographic system developed by our laboratory) was generated using the surveyed data and a digital map. The cross section of a river that was obtained from the ortho-rectified by the surveyed Kinematic data of GPS was compared with the result using ImageStation stereo-plotter of corp. Z/I Imaging. As a result of this study, the RMSE in the ortho-rect process using the surveyed GPS data was lowered as from 5.5788 pixels (about 2m) to 2.84 (about 1m) in comparison with it in the process using a digital map. The surveyed kinematic GPS in extraction of the cross section of a river was excellent as 6.6cm of the planimetric and precision in the confidence level of 95%. The correlation coefficient between the result from the using stereo-plotter and the extraction of cross section of a river using aerial photos was 0.8 hydrographical acquisition of it using PKNU 2 imagery will be possible.

  • PDF

Lane Extraction through UAV Mapping and Its Accuracy Assessment (무인항공기 매핑을 통한 차선 추출 및 정확도 평가)

  • Park, Chan Hyeok;Choi, Kyoungah;Lee, Impyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.1
    • /
    • pp.11-19
    • /
    • 2016
  • Recently, global companies are developing the automobile technologies, converged with state-of-the-art IT technologies for the commercialization of autonomous vehicles. These autonomous vehicles are required the accurate lane information to enhance its reliability by controlling the vehicles safely. Hence, the study planned to examine possibilities of applying UAV photogrammetry of high-resolution images, obtained from the low altitudes. The high-resolution DSM and the ortho-images were generated from the GSD 7cm-level digital images that were obtained and based on the generated data, when the positions information of the roads including the lanes were extracted. In fact, the RMSE of verifying the extracted data was shown to be about 15cm. Through the results from the study, it could be concluded that the low alititude UAV photogrammetry can be applied for generating and updating a high-accuracy map of road areas.