• Title/Summary/Keyword: High power module

Search Result 921, Processing Time 0.031 seconds

Design, Fabrication and temperature measuring experiments of solar collecting system using a single module reflectors (단일 모듈 반사경을 이용한 태양열 집열 시스템의 설계, 제작 및 온도측정 시험연구)

  • Yang, Byeong-Soo;Yang, Woo;Seo, Tae-Il;Son, Chang-Woo
    • Design & Manufacturing
    • /
    • v.13 no.1
    • /
    • pp.19-24
    • /
    • 2019
  • Currently, the world is paying keen attention to the production of renewable energy along with environmental issues, and the share of renewable energy in the world is rising above that of nuclear power. Especially when Korea, which is heavily dependent on foreign countries, needs to reconsider its national competitiveness due to the recent high oil prices, the government's energy policy is to develop and use renewable energy that replaces fossil fuels. In particular, solar energy, the most actively studied and commercialized field of renewable energy, is the main research for solar energy and is commercialized and used. However, the efficiency of solar energy has already reached saturation. Studies are also focusing on increasing the reflectivity of solar energy to increase efficiency. Therefore, this paper proposes a solar collection system that can utilize solar energy rather than solar energy. The proposed solar heat collection system uses solar tracking systems to effectively collect solar energy, particularly those that can be easily produced using single-modular reflectors and have price competitiveness. In addition, temperature measurement experiments with temperature measuring sensors were conducted to ensure reliability in order to verify the results interpreted.

Design and Implementation of Fully Automated Solar Powered Irrigation System

  • Mohammad Fawzi Al Ajlouni;Essam Ali Al-Nuaimy;Salman Abdul-Rassak Sultan;Ali Hammod AbdulHussein Twaij;Al Smadi Takialddin
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.197-205
    • /
    • 2024
  • This paper presents a fully automated stand-alone irrigation system with GSM (Global System for Mobile Communication) module. Solar energy is utilized to power the system and it is aimed to conserve water by reducing water losses. The system is based on a DC water pump that draws energy from solar panels along with automated water flow control using a moisture sensor. It is also fitted with alert and protection system that consists of an ultrasonic sensor and GSM messages sender that transmits signals showing the levels of the water in the reservoir and the battery charge. The control system is designed to stop the water pump from pumping water either when the battery level drops to equal or less than 10% of its full charge, or when the water level becomes less than 10 cm high in the reservoir. The experimental results revealed that the system is appropriate to use in remote areas with water scarcity and away from the national grid.

Three Dimensional Implementation of Intelligent Transportation System Radio Frequency Module Packages with Pad Area Array (PAA(Pad Area Array)을 이용한 ITS RF 모듈의 3차원적 패키지 구현)

  • Jee, Yong;Park, Sung-Joo;Kim, Dong-Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.1
    • /
    • pp.13-22
    • /
    • 2001
  • This paper presents three dimensional structure of RF packages and the improvement effect of its electrical characteristics when implementing RF transceivers. We divided RF modules into several subunits following each subunit function based on the partitioning algorithm which suggests a method of three dimension stacking interconnection, PAA(pad area array) interconnection and stacking of three dimensional RF package structures. 224MHz ITS(Intelligent Transportation System) RF module subdivided into subunits of functional blocks of a receiver(RX), a transmitter(TX), a phase locked loop(PLL) and power(PWR) unit, simultaneously meeting the requirements of impedance characteristic and system stability. Each sub­functional unit has its own frequency region of 224MHz, 21.4MHz, and 450KHz~DC. The signal gain of receiver and transmitter unit showed 18.9㏈, 23.9㏈. PLL and PWR modules also provided stable phase locking, constant voltages which agree with design specifications and maximize their characteristics. The RF module of three dimension stacking structure showed $48cm^3$, 76.9% reduction in volume and 4.8cm, 28.4% in net length, 41.8$^{\circ}C$, 37% in maximum operating temperature, respectively. We have found that three dimensional PAA package structure is able to produce high speed, high density, low power characteristics and to improve its functional characteristics by subdividing RF modules according to the subunit function and the operating frequency, and the features of physical volume, electrical characteristics, and thermal conditions compared to two dimensional RF circuit modules.

  • PDF

A Design and Control of Bi-directional Non-isolated DC-DC Converter with Coupled Inductors for Rapid Electric Vehicle Charging System

  • Kang, Taewon;Kim, Changwoo;Suh, Yongsug;Park, Hyeoncheol;Kang, Byungil;Kim, Daegyun
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.429-430
    • /
    • 2011
  • This paper presents a simple and cost-effective stand-alone rapid battery charging system of 30kW for electric vehicles. The proposed system mainly consists of active front-end rectifier of neutral point clamped 3-level type and non-isolated bi-directional dc-dc converter of multi-phase interleaved half-bridge topology with coupled inductors. The charging system is designed to operate for both lithium-polymer and lithium-ion batteries. The complete charging sequence is made up of three sub-interval operating modes; pre-charging mode, constant-current mode, and constant-voltage mode. The pre-charging mode employs the staircase shaped current profile to accomplish shorter charging time while maintaining the reliable operation of the battery. The proposed system is able to reach the full-charge state within less than 16min for the battery capacity of 8kWh by supplying the charging current of 67A. The optimal discharging algorithm for Vehicle to the Grid (V2G) operation has been adopted to maintain the discharging current of 1C. Owing to the simple and compact power conversion scheme, the proposed solution has superior module-friendly mechanical structure which is absolutely required to realize flexible power expansion capability in a very high-current rapid charging system.

  • PDF

A Study on Particle Filter based on KLD-Resampling for Wireless Patient Tracking

  • Ly-Tu, Nga;Le-Tien, Thuong;Mai, Linh
    • Industrial Engineering and Management Systems
    • /
    • v.16 no.1
    • /
    • pp.92-102
    • /
    • 2017
  • In this paper, we consider a typical health care system via the help of Wireless Sensor Network (WSN) for wireless patient tracking. The wireless patient tracking module of this system performs localization out of samples of Received Signal Strength (RSS) variations and tracking through a Particle Filter (PF) for WSN assisted by multiple transmit-power information. We propose a modified PF, Kullback-Leibler Distance (KLD)-resampling PF, to ameliorate the effect of RSS variations by generating a sample set near the high-likelihood region for improving the wireless patient tracking. The key idea of this method is to approximate a discrete distribution with an upper bound error on the KLD for reducing both location error and the number of particles used. To determine this bound error, an optimal algorithm is proposed based on the maximum gap error between the proposal and Sampling Important Resampling (SIR) algorithms. By setting up these values, a number of simulations using the health care system's data sets which contains the real RSSI measurements to evaluate the location error in term of various power levels and density nodes for all methods. Finally, we point out the effect of different power levels vs. different density nodes for the wireless patient tracking.

A Study on Implementation of Multi-Function Prototype IED H/W for Generator Protection (발전기 보호용 다기능 IED 시제품 H/W 구현에 관한 연구)

  • Kim, Yoon-Sang;An, Tae-Pung;Park, Chul-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.12
    • /
    • pp.74-80
    • /
    • 2013
  • Generator faults does not happen more often than the transmission and substation facility faults. However, impacts on the power system by generator faults are very large. In order to minimize the impact of generator faults, generator protection and control system with high reliability is required. Most of the generator relay in generator protection and control system of large power plant of Korea is operated by imports from abroad. Accordingly, in order to accumulate source technology and increase the import substitution effect, localization of multi-function generator protection IED is being developed. This paper deals with the implementation of a multi-function prototype IED H/W, which can be command and data exchange through communication for measuring, monitoring, protection and control. And the IED specification, various relay elements, measurement elements, communication functions, module function, and test system for the prototype IED H/W are described.

Zero-Voltage Switching Two-Transformer Full-Bridge PWM Converter With Lossless Diode-Clamp Rectifier (새로운 무 손실 다이오드 클램프 회로를 채택한 두 개의 트랜스포머를 갖는 영 전압 스위칭 풀 브릿지 컨버터)

  • Yoon H. K.;Han S. K.;Park J. S.;Moon G. W.;Youn M. J.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.551-555
    • /
    • 2004
  • The two-transformer full bridge (TTFB) PWM converter has two transformers which act as the output inductor as well as the main transformer, i.e. as the forward and the flyback transformer. Although the doubled leakage inductor of the TTFB makes it easier to achieve the zero-voltage switching (ZVS) of the lagging leg switch along the wide load range, it instigates a serious voltage ringing in the secondary rectifier diodes, which would require the dissipative snubber circuit, cause the serious power dissipation, and increase the voltage stress across those diodes. To overcome these problems, a, new lossless diode-clamp rectifier (LDCR) is employed as the output rectifier, which helps the voltage across rectifier diodes to be clamped on a half the output voltage $(V_o/2)$ or the output voltage $(V_o)$. Therefore, no dissipative snubber for rectifier diodes is needed and a high efficiency as well as low noise output voltage can be realized. The operations, analysis and design consideration of proposed converter are presented in this paper. To verify the validity of the proposed converter, experimental results from a 425W, 385-170Vdc prototype for the plasma display panel (PDP) sustaining power module (PSPM) are presented.

  • PDF

A Parallel Hybrid Soft Switching Converter with Low Circulating Current Losses and a Low Current Ripple

  • Lin, Bor-Ren;Chen, Jia-Sheng
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1429-1437
    • /
    • 2015
  • A new parallel hybrid soft switching converter with low circulating current losses during the freewheeling state and a low output current ripple is presented in this paper. Two circuit modules are connected in parallel using the interleaved pulse-width modulation scheme to provide more power to the output load and to reduce the output current ripple. Each circuit module includes a three-level converter and a half-bridge converter sharing the same lagging-leg switches. A resonant capacitor is adopted on the primary side of the three-level converter to reduce the circulating current to zero in the freewheeling state. Thus, the high circulating current loss in conventional three-level converters is alleviated. A half-bridge converter is adopted to extend the ZVS range. Therefore, the lagging-leg switches can be turned on under zero voltage switching from light load to full load conditions. The secondary windings of the two converters are connected in series so that the rectified voltage is positive instead of zero during the freewheeling interval. Hence, the output inductance of the three-level converter can be reduced. The circuit configuration, operation principles and circuit characteristics are presented in detail. Experiments based on a 1920W prototype are provided to verify the effectiveness of the proposed converter.

Protection of the MMCs of HVDC Transmission Systems against DC Short-Circuit Faults

  • Nguyen, Thanh Hai;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.242-252
    • /
    • 2017
  • This paper deals with the blocking of DC-fault current during DC cable short-circuit conditions in HVDC (High-Voltage DC) transmission systems utilizing Modular Multilevel Converters (MMCs), where a new SubModule (SM) topology circuit for the MMC is proposed. In this SM circuit, an additional Insulated-Gate Bipolar Translator (IGBT) is required to be connected at the output terminal of a conventional SM with a half-bridge structure, hereafter referred to as HBSM, where the anti-parallel diodes of additional IGBTs are used to block current from the grid to the DC-link side. Compared with the existing MMCs based on full-bridge (FB) SMs, the hybrid topologies of HBSM and FBSM, and the clamp-double SMs, the proposed topology offers a lower cost and lower power loss while the fault current blocking capability in the DC short-circuit conditions is still provided. The effectiveness of the proposed topology has been validated by simulation results obtained from a 300-kV 300-MW HVDC transmission system and experimental results from a down-scaled HVDC system in the laboratory.

A Study on the Tracking Method for Solar Module to Derive Optimum Performance (최적 발전성능 도출을 위한 태양광모듈 추적방법에 관한 연구)

  • Kim, Yongjin;Lee, Jong Soo;Chung, Yu-Gun;Kim, Jeong Tai
    • KIEAE Journal
    • /
    • v.12 no.1
    • /
    • pp.113-118
    • /
    • 2012
  • The photovoltaic is one of the most important sustainable technologies appliable to architectures. The power performance mainly depends on the installation conditions of them. This study aims to evaluate the power performance of photovoltaic system by the installation conditions, the tracking methods and reflecting mirrors. For the study, the Solar Pro computer simulations have been conducted on installation angles, solar azimuth and solar altitude. Also, the field mock-up tests are performed to of its application to verify the simulation results. Both the results of the experiment and the simulation have proved that the efficiency of 90-degree fixed angle method was higher than that of 30-degree fixed angle, the efficiency of altitude tracking was better than that of azimuth tracking method, and changing both the altitude and the azimuth together is more efficient rather than the shortened tracing way. In addition, the light-concentrating method in which the incidence angle of the sun is controlled by an adhered reflector has been analyzed to have better efficiency than the general method of tracing according to the orbit of the sun. Therefore, this thesis is expected to offer the basic data to set a more effective tracing-type of photovoltaic power generation system in the future. For this, more researches are to be conducted hereafter on a high efficiency drive motor and the establishment of an economic system.