• Title/Summary/Keyword: High power application

Search Result 2,204, Processing Time 0.031 seconds

A Study on a Flux Switching Motor Drive for Fan Application

  • Kim, Nam-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.7
    • /
    • pp.49-56
    • /
    • 2009
  • A new class of electronically commutated brushless motors, the flux-switching motor (FSM), is gradually emerging for use in power tools and household appliances especially fan and pump application thanks to green policies, This motor offers such advantages as high-power density and relatively high efficiency compare to induction motors, and low cost and simple motor structure compare to the BLDC motor. This paper presents the principle of the FSM and design of the 12/6 pole FSM drive system for fan application. Test results of the prototype motor are provided to verify the validity of the fan application with a TMS320F2812 DSP and inverter.

Design of Snubber Capacitor for Equalization of Voltage Sharing in Series Connected SiC MOSFETs

  • Min, Juhwa;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.188-189
    • /
    • 2017
  • There has been a growing demand for power semiconductor switches equipped with high-voltage blocking capability of kV range and fast-switching characteristics of ns range in various plasma application. This paper investigates the application of SiC MOSFETs in the particular plasma application which requires the blocking voltage of 4.5kV and the switching transient time of less than 100ns. In order to meet the required blocking voltage, the series connection of multiple SiC MOSFETs is adopted in this paper. Also, snubber capacitors are employed to equalize the voltage sharing among the series connected SiC MOSFETs. The simulation and experimental result successfully verifies the application of SiC MOSFETs and snubber capacitors in the plasma application requiring high-voltage and fast-switching load dynamics.

  • PDF

Development of Integrated Start-up and Excitation System for Gas Turbine Synchronous Generator (가스터빈 동기기 통합형 기동 및 여자시스템 개발)

  • Ryu, Hoseon;Cha, Hanju
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.3
    • /
    • pp.183-188
    • /
    • 2014
  • Power conversion systems used in large gas turbine power plant can be divided into two main part. Because of the initial start-up characteristic of the gas turbine combustor, the gas turbine must be accelerated by starting device(LCI : Load Commutated Inverter) up to 10%~20% of rated speed to ignite it. In addition, the ECS(Excitation Control system) is used to control the rotor field current and reactive power in grid-connected synchronous generator. These two large power conversion systems are located in the same space(container) because of coordination control. Recently, many manufactures develop high speed controller based on function block available in the LCI and ECS with the newest power semiconductor. We also developed high speed controller based on function block to be using these two system and it meets the international standard IEC61131 as using real-time OS(VxWorks) and ISaGRAF. In order to install easily these systems at power plant, main controller, special module and IO module are used with high speed communication line other than electric wire line. Before initial product is installed on the site, prototype is produced and tests are conducted for it. The performance results of Integrated controller and application program(SFC, ECS) were described in this paper. The test results will be considered as the important resources for the application in future.

A Study on Flux Switching Motor drive for Fan Application with Advance angle (선행각을 이용한 팬용 플럭스 스위칭 전동기 드라이브에 대한 연구)

  • Kim, Nam-Hun;Koo, Bon-Sam
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.6
    • /
    • pp.89-95
    • /
    • 2009
  • A new class of electronically commutated brushless motor, the flux-switching motor(FSM) is gradually emerging in power tools and household appliances especially fan and pump application because of green policy. This motor offers advantages of high-power density and relatively high efficiency compare with induction motor, low cost and simple motor structure compare with bldc motor. This paper presents the principle of the FSM and design of the 12/6 pole FSM drive system for fan application. Finally, test results of the prototype motor are provided to verify a validity of the fan application with TMS320F2812 DSP and inverter.

Solid State Pulsed Power Modulator and Its Application (반도체 스위치기반 펄스전원 기술 개발 및 응용)

  • Ryoo, Hong-Je;Jang, Sung-Roc
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.193-194
    • /
    • 2015
  • In this paper, the solid state pulsed power modulator developed in KERI, which is based on IGBT technologies are overviewed. During last ten years, several kinds of solid state modulators were developed in KERI such as IGBT stacks with step up transformer, full IGBT stack based marx generator, modified IGBT marx generator and high repetitive solid state modulator. Basic principle of the design is described and each pros and cons are compared. KERI's solid state pulsed power modulators has lot of advantages for industrial pulsed power application focused on everlasting life cycle and high repetitive, and shows superior arching protection ability.

  • PDF

A Power Estimation Method for ASIPs Considering Data Types of Variables in Application Programs

  • Kim, Tsutomu ura;Shibahara, Shin-ichi;Yoshinori Takeuchi;Masaharu Imai;Akira Kitajima;Michiaki Muraoka
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.387-390
    • /
    • 2000
  • This paper proposes an efficient and accurate power estimation method for Application Specific Instruction set Processors (ASIPs). Proposed method takes advantage of the data types of variables in application program to be executed on the ASIP. According to the experimental results, the efficiency of proposed method was more than 1000 times as high as that of conventional RTL based power estimation method, and the estimation error was within 10% compared to a conventional gate-level accurate power estimation method

  • PDF

A Three-Phase AC-DC High Step-up Converter for Microscale Wind-power Generation Systems

  • Yang, Lung-Sheng;Lin, Chia-Ching;Chang, En-Chih
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1861-1868
    • /
    • 2016
  • In this paper, a three-phase AC-DC high step-up converter is developed for application to microscale wind-power generation systems. Such an AC-DC boost converter prossessess the property of the single-switch high step-up DC-DC structure. For power factor correction, the advanced half-stage converter is operated under the discontinuous conduction mode (DCM). Simulatanously, to achieve a high step-up voltage gain, the back half-stage functions in the continuous conduction mode (CCM). A high voltage gain can be obtained by use of an output-capacitor mass and a coupled inductor. Compared to the output voltage, the voltage stress is decreased on the switch. To lessen the conducting losses, a low rated voltage and small conductive resistance MOSFETs are adopted. In addition, the coupled inductor retrieves the leakage-inductor energy. The operation principle and steady-state behavior are analyzed, and a prototype hardware circuit is realized to verify the performance of the proposed converter.

Power Electronics as an Enabling Technology for Renewable Energy Integration

  • Blaabjerg, F.;Chen, Z.
    • Journal of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.81-89
    • /
    • 2003
  • The global electrical energy consumption is still rising and there is a steady demand to increase the power capacity, to produce, distribute and use the energy as0 efficient as possible and furthermore to set up incentives to save energy at the md-user. Two major technologies will play important roles to fulfill those targets. One is to change the electrical power production sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. The other is to use high efficiency power electronics in power systems for high efficiency and high performance applications. This paper discusses both areas, in particular the power electronic application in wind power integration.

Control System to Improve a Driving Characteristic of BLDCM for Tread Mill Application (Tread Mill용 BLDCM의 구동 특성 향상을 위한 제어시스템)

  • Lee Ju-Hyun;An Young-Joo;Ahn Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.50-53
    • /
    • 2004
  • BLDCM(Brushless D.C. Motor) is widely used for industrial application because of high efficiency and high power density. Especially, in servo system and home appliance, BLDCM is very useful due to high control performance and low acoustic noise. In this paper, 2.5HP rated BLDCM and its controller is developed for tread mill application. The prototype BLDCM has 4 poles rotor and 24 slots stator. Ferrite magnet was used as a rotor magnet because of the cost and temperature characteristic. For the stable operation of tread mill, current and temperature can be detected and treated by DSP. Thedesigned BLDCM and its controller is verified by the experimental results.

  • PDF

Development of on-line system using electromagnetic wave for diagnosis of deteriorated power equipment (전자파 검출에 의한 전력기기 On-Line 열화 측정시스템 개발)

  • Kang, C.W.;Choi, G.S.;Lee, Y.S.;Kim, C.W.;Kang, D.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1664-1666
    • /
    • 2001
  • This paper presents the development of electromagnetic wave detecting equipment for diagnosis of enclosed switchboard. High voltage power equipments are very important equipment of the key industries and the private enterprise. Power line accidents are national plans because of those set off casualties lose of power equipments and communication networks. Therefore the necessity of the development of detecting for power equipment diagnosis is demand for prevention of high voltage equipment accidents. This paper is the development of electromagnetic wave detecting equipment for diagnosis of high voltage equipment. This paper establishes the diagnosis method for high voltage power equipments, that secures original technique and possesses detecting technique for electromagnetic wave. By the study we developed electromagnetic wave detector, and we applied this equipment application tests at the place constructed high voltage equipments.

  • PDF