• 제목/요약/키워드: High performance engine

검색결과 1,051건 처리시간 0.027초

후처리장치를 이용한 대형디젤기관에서의 배기성능에 관한 연구 (Effects of Aftertreatments of Emission Performance in Heavy duty diesel)

  • 이상준;최경호
    • 한국자동차공학회논문집
    • /
    • 제8권4호
    • /
    • pp.34-41
    • /
    • 2000
  • The purpose of this research was to investigate the effects of exhaust gas recirculation(EGR) with diesel particulate filter(DPF) on heavy duty diesel engine. The exhaust gas was recirculated to the intake manifold after the smoke was eliminated in the DPF, The major conclusions of this research are i)at each engine speed EGR ratio was able to 60% maximum ii) the amount of NOx emissions was decreased to 90% at high engine load and to more than 60% at low engine load and iii) the amout of NOx emissions was increased to five times according to the increase of engine load but the effect of EGR is more effective at high engine load.

  • PDF

2행정 디젤엔진의 소기압력이 사이클변동에 미치는 영향에 관한 연구 (A Study on the Effect of Cycle Variation on Scavenging pressure in 2-Stroke Diesel Engine)

  • 윤창식;김치원;김기복
    • 한국산업융합학회 논문집
    • /
    • 제19권3호
    • /
    • pp.154-159
    • /
    • 2016
  • Recently it has been focused that the automobile engine has developed in a strong upward tendency for the use of the high viscosity and poorer quality fuels in achieving the high performance, fuel economy, and emission reduction. Therefore it is not easy to solve the problems between low specific fuel consumption, and exhaust emission control at automotive engine In this study, it is designed and used the test bed which is installed with fuel injector controller. In addition to equipped engine using CRDI by controlling the injection timing with modulator, it has tested and analyzed the engine cycle variation characteristics, as it is varied that they are the operating parameters: fuel injected quantity, injection timing, engine speed and scavenging pressure.

흡기계의 동적효과가 기관성능에 미치는 영향 (The dynamic effects of intake system on the engine performance)

  • 조진호;김병수
    • 오토저널
    • /
    • 제9권3호
    • /
    • pp.85-93
    • /
    • 1987
  • The intake system of 4-cycle, 4-cylinder reciprocating engine is investigated the simple model composed of vessel, duct and throttling part. The numerical calculation based on the simulation is performed for the flow phenomena including heat transfer, friction and bend of duct at each part. In the multi-cylinder engine, the volumetric efficiency is increased a little as the junction location is closed to cylinder at the engine speed having maximum volumetric efficiency. The configuration and dimension of intake system have an influence on the inertia effect by resistance and pressure variation, and the magnitude of that is varied by the engine speed. Thus the volumetric efficiency is correlative to them. The volumetric efficiency is high as the intake valve close is advanced at the low engine speed, and is delayed at high speed.

  • PDF

선회유동 및 연소인자가 터보과급 디젤엔진의 성능 및 배기가스특성에 미치는 영향 (Effects of Swirl and Combustion Parameters on the Performance and Emission in a Turbocharged D.1. Diesel Engine)

  • 윤준규;차경옥
    • 에너지공학
    • /
    • 제11권2호
    • /
    • pp.90-98
    • /
    • 2002
  • 본 연구는 선회유동과 연소인자가 9.4L인 터보과급 디젤엔진의 성능과 배기가스특성에 미치는 영향을 실험적으로 고찰하였다. 일반적으로 디젤엔진의 연소과정에서 선회유동은 분사되고 있는 연료와 흡칩공기의 혼합을 촉진시켜 줌으로써 엔진성능을 향상시키는데 매우 중요한 인자가 된다. 특히 터보과급 디젤엔진에서는 실린더내의 고온.고압가스로 인하여 연비와 NO$_{x}$ 농도는 서로 상반관계를 가지므로 적절한 용량의 과급기선정으로 흡.배기시스템, 분사시스템 및 연소실의 설계 등을 고려할 필요가 있다. 본 연구의 결과로서, 정상유동실험을 통하여 선회비가 증가함으로써 평균유량계수가 감소하고, 반면에 걸프 펙터가 증가함을 알 수 있었다. 또한 엔진실험을 통하여 흡기포트의 선회비 2.43, 분사시기 BTDC 13$^{\circ}$ CA, 압축비 16, 리앤트란트 5$^{\circ}$형 연소실, 노즐분공경 $\Phi$0.28*6 및 과급기 GT40(압축기 A/R 0.58, 터빈 A/R 1.19)의 적용인자가 최적의 성능 및 배기가스를 만족시킬 수 있었다.

과급디젤기관의 성능시뮤레이션 프로그램개발 (Development of a Simulation Program for the Performance of Turbo-Charged Diesel Engines)

  • 최재성;박태인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권2호
    • /
    • pp.97-103
    • /
    • 1994
  • This paper describes briefly the simulation program for predicting the performance of a high speed turbocharged four cycle diesel engine. The wave phenomena in the intake and exhaust systems are calculated by the characteristic method. The combustion process in the power cycle is represented by the heat release pattern which is given by the Wiebe's function or the pattern based on measured values. Turbocharger matching for the engine is described by utilizing the characteristic maps of both the compressor and turbine, which are obtained from quasi-steady states. A comparison of experimental and calculated results shows a good agreement. Then the influences of the intake system, the period of valve overlap and the characteristics of the turbine are numerically investigated by the simulation.

  • PDF

대형 액상 LPG 분사식 SI 엔진에서 화염 가시화를 이용한 희박영역에서의 화염 전파특성 연구 (Flame Propagation Characteristics in a Heavy Duty Liquid Phase LPG Injection SI Engine by Flame Visualization)

  • 김승규;배충식;이승목;김창업;강건용
    • 한국자동차공학회논문집
    • /
    • 제10권4호
    • /
    • pp.23-32
    • /
    • 2002
  • Combustion and flame propagation characteristics of the liquid phase LPG injection (LPLI) engine were investigated in a single cylinder optical engine. Lean bum operation is needed to reduce thermal stress of exhaust manifold and engine knock in a heavy duty LPG engine. An LPLI system has advantages on lean operation. Optimized engine design parameters such as swirl, injection timing and piston geometry can improve lean bum performance with LPLI system. In this study, the effects of piston geometry along with injection timing and swirl ratio on flame propagation characteristics were investigated. A series of bottom-view flame images were taken from direct visualization using an W intensified high-speed CCD camera. Concepts of flame area speed, In addition to flame propagation patterns and thermodynamic heat release analysis, was introduced to analyze the flame propagation characteristics. The results show the correlation between the flame propagation characteristics, which is related to engine performance of lean region, and engine design parameters such as swirl ratio, piston geometry and injection timing. Stronger swirl resulted in foster flame propagation under open valve injection. The flame speed was significantly affected by injection timing under open valve injection conditions; supposedly due to the charge stratification. Piston geometry affected flame propagation through squish effects.

자동차 엔진 냉각시스템의 컴퓨터 시뮬레이션 (Computer Simulation of an Automotive Engine Cooling System)

  • 원성필;윤종갑
    • 한국자동차공학회논문집
    • /
    • 제11권4호
    • /
    • pp.58-67
    • /
    • 2003
  • An automotive engine cooling system is closely related with overall engine performances, such as reduction of fuel consumption, decrease of air pollution, and increase of engine life. Because of complex reaction between each component, the direct experiment, using a vehicle, takes high cost, long time, and slow response to the system change. Therefore, a computer simulation would provide the designer with an inexpensive and effective tool for design, development, and optimization of the engine cooling system over a wide range of operating conditions. In this work, it has been predicted the thermal performance of the engine cooling system in cases of stationary mode, constant speed mode, and city-drive mode by mathematical modelling of each component and numerical analysis. The components are engine, radiator, heater, thermostat, water pump, and cooling fans. Since the engine model is the most important, that is divided into eight sub-sections. The volume mean temperature of eight sub-sections are simultaneously calculated at a time. For detail calculation, the radiator and heater are also divided into many sub-sections like control volumes in finite difference method. Each sub-section is assumed to consist of three parts, coolant, tube with fin, and air. Hence it has been developed the simulation program that can be used in case of design and system configuration changes. The overall performance results obtained by the program were desirable and the time-traced tendencies of the results agreed fairly well with those of actual situations.

LPG기관의 부분부하 조건에서 수소 혼합에 따른 성능 및 배출가스 특성에 관한 실험적 연구 (An Experimental Study on the Performance and Emission Characteristics with Hydrogen Enrichment at Part Load Conditions Using a LPG Engine)

  • 김인구;김기종;이성욱;조용석
    • 한국수소및신에너지학회논문집
    • /
    • 제24권3호
    • /
    • pp.242-248
    • /
    • 2013
  • The purpose of this study is to obtain low-emission and high-efficiency by hydrogen enriched LPG fuel in LPG engine and is to clarify the effects of hydrogen enrichment in LPG fuelled engine on exhaust emission and performance. An experimental study was carried out to obtain fundamental data for performance and emission characteristics of hydrogen enrichment in LPG engine. The research was held by changing the hydrogen ratio to 0, 5, 10, 20% in 1500rpm, bmep 2 and 4bar. The result turned out that the combustion duration was shortened due to fast flame propagation of hydrogen. And the amount of Carbon dioxide and Hydrocarbon decreased. However, the amount of NOX increased, which is thought to be the result of high adiabatic flame temperature of hydrogen. It has been confirmed that this phenomenon has changed by the Hydrogen mixing ratio.

목질 열분해유의 디젤 엔진 적용성 연구 (Feasibility Study of Using Wood Pyrolysis Oil in a Diesel Engine)

  • 이석환;박준혁;임기훈;최영;우세종;강건용
    • 한국분무공학회지
    • /
    • 제16권3호
    • /
    • pp.152-158
    • /
    • 2011
  • Fast pyrolysis of biomass is one of the most promising technologies for converting biomass to liquid fuels. The pyrolysis oil, also known as the bio crude oil (BCO), have been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of BCO in diesel engine requires modifications due to low energy density, high water contents, low acidity, and high viscosity of the BCO. One of the easiest way to adopt BCO to diesel engine without modifications is the use of BCO/diesel emulsions. In this study, a diesel engine operated with diesel, bio diesel (BD), and BCO/diesel emulsion was experimentally investigated. Performance and emission characteristics of a diesel engine fuelled by BCO/diesel emulsion were examined. Results showed that stable engine operation was possible with emulsion and engine output power was comparable to diesel and bio diesel operation. Long term validation of adopting BCO in diesel engine is still needed because the oil is acid, with consequent problems of corrosion especially in the injection system.

기유와 첨가제 혼합 전 다등급 윤활유의 성능 예측 시뮬레이션 프로그램 개발 (Development of a Simulation Program to Predict the Performance of the Multi-grade Lubricant before Blending Base Oil with Additives)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제28권2호
    • /
    • pp.47-55
    • /
    • 2012
  • Generally, to product multi-grade oil like engine oil, a sort of mineral base oil is mixed with a fundamental additive package liquid and a polymer liquid as viscosity index improver in order to improve the lubricating property of base oil. That is, engine oil is the mixture of more than two fluids. Specially, a polymeric type liquid cannot be seen as the linear viscosity like Newtonian fluids. In this research, by using the governing equation describing non-Newtonian hydrodynamic lubrication related with the mixture of incompressible fluids based on the principle of continuum mechanics, it will be compared the bearing performance between the mixture of each liquid to be blended and multi-grade engine oil as a single fluid in a high speed hydrodynamic journal bearing. Further, it is to be found the way estimating the performance of the blended multi-grade engine lubricant in a journal bearing in advance before blending by using the physical properties of mineral base oil, fundamental additive liquid and polymer liquid of viscosity index improver. So, it can be reduced the number of trial and error to get the wanted lubricant by selecting the proper volume fraction of each liquid to satisfy the expected performance and estimating in advance the performance of various multi-grade oils before blending. Therefore, it can be shorten the developing time and saved the developing cost.