• Title/Summary/Keyword: High level synthesis

Search Result 400, Processing Time 0.032 seconds

RNA Editing Enzyme ADAR1 Suppresses the Mobility of Cancer Cells via ARPIN

  • Min Ji Park;Eunji Jeong;Eun Ji Lee;Hyeon Ji Choi;Bo Hyun Moon;Keunsoo Kang;Suhwan Chang
    • Molecules and Cells
    • /
    • v.46 no.6
    • /
    • pp.351-359
    • /
    • 2023
  • Deamination of adenine or cytosine in RNA, called RNA editing, is a constitutively active and common modification. The primary role of RNA editing is tagging RNA right after its synthesis so that the endogenous RNA is recognized as self and distinguished from exogenous RNA, such as viral RNA. In addition to this primary function, the direct or indirect effects on gene expression can be utilized in cancer where a high level of RNA editing activity persists. This report identified actin-related protein 2/3 complex inhibitor (ARPIN) as a target of ADAR1 in breast cancer cells. Our comparative RNA sequencing analysis in MCF7 cells revealed that the expression of ARPIN was decreased upon ADAR1 depletion with altered editing on its 3'UTR. However, the expression changes of ARPIN were not dependent on 3'UTR editing but relied on three microRNAs acting on ARPIN. As a result, we found that the migration and invasion of cancer cells were profoundly increased by ADAR1 depletion, and this cellular phenotype was reversed by the exogenous ARPIN expression. Altogether, our data suggest that ADAR1 suppresses breast cancer cell mobility via the upregulation of ARPIN.

Physiological and transcriptome analysis of acclimatory response to cold stress in marine red alga Pyropia yezoensis

  • Li-Hong Ma;Lin Tian;Yu-Qing Wang;Cong-Ying Xie;Guo-Ying Du
    • ALGAE
    • /
    • v.39 no.1
    • /
    • pp.17-30
    • /
    • 2024
  • Red macroalga Pyropia yezoensis is a high valuable cultivated marine crop. Its acclimation to cold stress is especially important for long cultivation period across winter in coasts of warm temperate zone in East Asia. In this study, the response of P. yezoensis thalli to low temperature was analyzed on physiology and transcriptome level, to explore its acclimation mechanism to cold stress. The results showed that the practical photosynthesis activity (indicated by ΦPSII and qP) was depressed and pigment allophycocyanin content was decreased during the cold stress of 48 h. However, the Fv/Fm and non-photochemical quenching increased significantly after 24 h, and the average growth rate of thalli also rebounded from 24 to 48 h, indicating a certain extent of acclimation to cold stress. On transcriptionally, the low temperature promoted the expression of differentially expressed genes (DEGs) related to carbohydrate metabolism and energy metabolism, while genes related to photosynthetic system were depressed. The increased expression of DEGs involved in ribosomal biogenesis and lipid metabolism which could accelerate protein synthesis and enhance the degree of fatty acid unsaturation, might help P. yezoensis thallus cells to cope with cold stress. Further co-expression network analysis revealed differential expression trends along with stress time, and corresponding hub genes play important roles in the systemic acquired acclimation to cold stress. This study provides basic mechanisms of P. yezoensis acclimation to cold temperature and may aid in exploration of functional genes for genetic breeding of economic macroalgae.

Effects of glucose on metabolism and Insulin-like growth factor binding-3 expression in human fibroblasts. (사람의 섬유아세포에서 glucose 농도가 물질대사 및 Insulin-like growth factor binding protein-3의 발현에 미치는 영향)

  • Ryu, Hye-Young;Hwang, Hye-Jung;Kim, In-Hye;Ryu, Hong-Soo;Nam, Taek-Jeong
    • Journal of Life Science
    • /
    • v.17 no.5 s.85
    • /
    • pp.687-693
    • /
    • 2007
  • Insulin-like growth factor-I(IGF-I) has significant insulin-like anabolic effects which include the stimulation of glucose and amino acid uptake, as well as protein and glycogen synthesis. IGFs exist in serum and other biological fluids as complexes bound to a family of structurally related insulin-like growth factor binding proteins(IGFBPs). Six human IGFBPs can modulate the effects of IGFs on target tissues by several mechanisms, including altering the serum's half-life and the transcapillary transport of IGFs, as well as changing the availability of IGFs to specific cell surface receptors. Human fibroblasts secrete IGFBPs that can modify IGF-I action. Previous to our study using either Northern blotting, and Western blotting have shown that fibroblasts express mRNA IGFBP-3, -4, and -5, and synthesize these proteins. In addition, fibroblast cell lysates revealed that the IGFBP-3 was most abundant. For these reasons, we undertook to gain further insight into the effects of high and low glucose incubation condition on metabolism and IGFBP-3 expression. In results of metabolites and IGFBP-3 expression in GM10 cells cultivated with various glucose concentration, the consumption of glucose and accumulation of triglyceride were increased in condition of high glucose, and total protein level was decreased. in the course of time. After 5 days incubation, levels of free amino acid in medium containing glucose of high concentration glucose were higher than in conditions of low glucose. Although the levels of IGFBP-3 protein and mRNA levels were increased in low glucose, and IGFBP-3 was not affected by any pretense. Taken together, we suggest that the study of growth factors, like IGFs, might be a possible model of diabetes militus in cell, although the results in cell models were not in accord with in vivo.

Anti-Obesity Effect of By-Product from Soybean on Mouse Fed a High Fat Diet (고지방 식이로 유도된 비만 마우스에서 대두 부산물인 순물과 침지수의 항비만 효과)

  • Park, Young Mi;Lim, Jae Hwan;Seo, Eul Won
    • Korean Journal of Plant Resources
    • /
    • v.28 no.2
    • /
    • pp.168-177
    • /
    • 2015
  • Here we study the anti-obesity effects of by-product from soybean on mouse fed high fat diet. The body weight gain, visceral and subcutaneous adipose tissue weight, liver and epididymal adipose tissue weight in freeze-dried soybean-soaking-water (SSW) powder fed group showed lower level than those in high fat diet (HFD) group by determining with weight measuring and histological methods. Also, histological analyses of the liver and fat tissues of SSW grouped mice revealed significantly less number of lipid droplets formation and smaller size of adipocytes compared to the HFD group. Moreover, the levels of total serum cholesterol, LDL-cholesterol and the atherogenic index were decreased in the SSW groups. Especially, in SSW group, the levels of phosphorylation of two lipid oxidation enzymes, adenosine monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylasse (ACC) were elevated hence that may activate fatty acid oxidation. But AST and ALT levels were not changed in blood. By micro-CT analysis of abdomen, SSW groups significantly showed a tendency to decrease visceral and subcutaneous fats as well as fat-deposited areas compared to HFD group. Taken together, we suggest that soybean soaking water has a function in ameliorating obesity through inhibiting lipid synthesis as well as stimulating fatty acid oxidation.

The effect of nanoemulsified methionine and cysteine on the in vitro expression of casein in bovine mammary epithelial cells

  • Kim, Tae-Il;Kim, Tae-Gyun;Lim, Dong-Hyun;Kim, Sang-Bum;Park, Seong-Min;Lim, Hyun-Joo;Kim, Hyun-Jong;Ki, Kwang-Seok;Kwon, Eung-Gi;Kim, Young-Jun;Mayakrishnan, Vijayakumar
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.2
    • /
    • pp.257-264
    • /
    • 2019
  • Objective: Dairy cattle nutrient requirement systems acknowledge amino acid (AAs) requirements in aggregate as metabolizable protein (MP) and assume fixed efficiencies of MP used for milk protein. Regulation of mammary protein synthesis may be associated with AA input and milk protein output. The aim of this study was to evaluate the effect of nanoemulsified methionine and cysteine on the in-vitro expression of milk protein (casein) in bovine mammary epithelial cells (MAC-T cells). Methods: Methionine and cysteine were nonionized using Lipoid S 75 by high-speed homogenizer. The nanoemulsified AA particle size and polydispersity index were determined by dynamic light scattering correlation spectroscopy using a high-performance particle sizer instrument. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to determine the cytotoxicity effect of AAs with and without nanoionization at various concentrations (100 to $500{\mu}g/mL$) in mammary epithelial cells. MAC-T cells were subjected to 100% of free AA and nanoemulsified AA concentration in Dulbecco's modified Eagle medium/nutrient mixture F-12 (DMEM/F12) for the analysis of milk protein (casein) expression by the quantitative reverse transcription polymerase chain reaction method. Results: The AA-treated cells showed that cell viability tended to decrease (80%) in proportion to the concentration before nanogenesis, but cell viability increased as much as 90% after nanogenesis. The analysis of the expression of genetic markers related to milk protein indicated that; ${\alpha}_{s2}$-casein increased 2-fold, ${\kappa}$-casein increased 5-fold, and the amount of unchanged ${\beta}$-casein expression was nearly doubled in the nanoemulsified methionine-treated group when compared with the free-nanoemulsified methionine-supplemented group. On the contrary, the non-emulsified cysteine-administered group showed higher expression of genetic markers related to milk protein ${\alpha}_{s2}$-casein, ${\kappa}$-casein, and ${\beta}$-casein, but all the genetic markers related to milk protein decreased significantly after nanoemulsification. Conclusion: Detailed knowledge of factors, such nanogenesis of methionine, associated with increasing cysteine and decreasing production of genetic markers related to milk protein (casein) will help guide future recommendations to producers for maximizing milk yield with a high level of milk protein casein.

Residual Stress Behavior of PMDA/6FDA-PDA Copolyimide Thin Films (PMDA/6FDA-PDA 공중합 폴리이미드의 잔류응력 거동)

  • Jang, Won Bong;Chung, Hyun Soo;Joe, Yungil;Han, Haksoo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1014-1019
    • /
    • 1999
  • Copolyamic acid PMDA/6FDA-PDA(PAA) and homopolyamic acids PMDA-PDA(PAA) and 6FDA-PDA(PAA) were synthesized from 1,2,4,5-benzenetetracarboxylic dianhydride(PMDA) and 2,2'-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride(6FDA) as the dianhydride and 1,4-phenylenediamine (PDA) as the diamine. Residual stresses were detected in-situ during thermal imidization of the co- and homopolyimide precursors as a function of processing temperature over the range of $25{\sim}400^{\circ}C$ using thin film stress analyzer(TFSA), and morphological structures were investigated by WAXD. In comparison, the resultant residual stress of polyimide films composed of different compositions decreased with the increasing content of PMDA unit in the chain and was about 5 Mpa in compression mode for PMDA-PDA. In this study, the synthesis of random PMDA/6FDA-PDA copolyimide could be completed and compensate for the difficulty of process due to high $T_g$ of PMDA-PDA and relatively higher stress of 6FDA-PDA. It showed that we can make a low level stress copolyimied having excellent mechanical properties by incorporating appropriate rod-like rigid structure PMDA-PDA unit into 6FDA-PDA polyimide backbone which generally shows higher stress due to rotational hinges such as bulky di(trifluoromethyl). Specially, PMDA/6FDA-PDA(0.9:0.1:1.0) satisfied excellent mechanical property and low level stress as an inter layer showing low dielectric constant.

  • PDF

Comparative physiological and proteomic analysis of leaf in response to cadmium stress in sorghum

  • Roy, Swapan Kumar;Cho, Seong-Woo;Kwon, Soo Jeong;Kamal, Abu Hena Mostafa;Kim, Sang-Woo;Lee, Moon-Soon;Chung, Keun-Yook;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.124-124
    • /
    • 2017
  • Cadmium (Cd) is of particular concern because of its widespread occurrence and high toxicity and may cause serious morpho-physiological and molecular abnormalities in in plants. The present study was performed to explore Cd-induced morpho-physiological alterations and their potentiality associated mechanisms in Sorghum bicolor leaves at the protein level. Ten-day-old sorghum seedlings were exposed to different concentrations (0, 100, and $150{\mu}M$) of $CdCl_2$, and different morpho-physiological responses were recorded. The effects of Cd exposure on protein expression patterns in S. bicolor were investigated using two-dimensional gel electrophoresis (2-DE) in samples derived from the leaves of both control and Cd-treated seedlings. The observed morphological changes revealed that the plants treated with Cd displayed dramatically altered shoot lengths, fresh weights, and relative water content. In addition, the concentration of Cd was markedly increased by treatment with Cd, and the amount of Cd taken up by the shoots was significantly and directly correlated with the applied level of Cd. Using the 2-DE method, a total of 33 differentially expressed protein spots were analyzed using MALDI-TOF/TOF MS. Of these, treatment with Cd resulted in significant increases in 15 proteins and decreases in 18 proteins. Significant changes were absorbed in the levels of proteins known to be involved in carbohydrate metabolism, transcriptional regulation, translation and stress responses. Proteomic results revealed that Cd stress had an inhibitory effect on carbon fixation, ATP production and the regulation of protein synthesis. In addition, the up-regulation of glutathione S-transferase and cytochrome P450 may play a significant role in Cd-related toxicity and stress responses. Our study provides insights into the integrated molecular mechanisms involved in response to Cd and the effects of Cd on the growth and physiological characteristics of sorghum seedlings. The upregulation of these stress-related genes may be candidates for further research and use in genetic manipulation of sorghum tolerance to Cd stress.

  • PDF

Enrichment and verification of differentially expressed miRNAs in bursa of Fabricius in two breeds of duck

  • Luo, Jun;Liu, Junying;Liu, Hehe;Zhang, Tao;Wang, Jiwen;He, Hua;Han, Chunchun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.7
    • /
    • pp.920-929
    • /
    • 2017
  • Objective: The bursa of Fabricius (BF) is a central humoral immune organ belonging specifically to avians. Recent studies had suggested that miRNAs were active regulators involved in the immune processes. This study was to investigate the possible differences of the BF at miRNA level between two genetically disparate duck breeds. Methods: Using Illumina next-generation sequencing, the miRNAs libraries of ducks were established. Results: The results showed that there were 66 differentially expressed miRNAs and 28 novel miRNAs in bursa. A set of abundant miRNAs (i.e., let-7, miR-146a-5p, miR-21-5p, miR-17~92) which are involved in immunity and disease were detected and the predicted target genes of the novel miRNAs were associated with duck high anti-adversity ability. By gene ontology analysis and enriching KEGG pathway, the targets of differential expressed miRNAs were mainly involved in immunity and disease, supporting that there were differences in the BF immune functions between the two duck breeds. In addition, the metabolic pathway had the maximum enriched target genes and some enriched pathways that were related to cell cycle, protein synthesis, cell proliferation and apoptosis. It indicted that the difference of metabolism may be one of the reasons leading the immune difference between the BF of two duck breeds. Conclusion: This data lists the main differences in the BF at miRNAs level between two genetically disparate duck breeds and lays a foundation to carry out molecular assisted breeding of poultry in the future.

Effect of Ginsenosides on .the Biosynthesis of Low density Lipoprotein Receptor in Cultured Chinese Hamster Ovary(CHO) Cell (인삼사포닌 (ginsenoside) 저밀도 지방단백질 수용체 생합성에 미치는 영향)

  • Ju, Chung-No;Gang, In-Cheol;Lee, Hui-Bong
    • Journal of Ginseng Research
    • /
    • v.12 no.2
    • /
    • pp.104-113
    • /
    • 1988
  • Effect of the purified ginsenoside $-Rb_1$ and $-Rb_2$ on LDL receptor biosynthesis of CHO cell cultured in a high cholesterol medium was investigated . Cholesterol uptake by CHO cell cultured in a medium containing various amounts of cholesterol was traced and found that the cholesterol uptake was proportional to the concentration of cholesterol in the medium, and the population of LDL receptors were proportionally decreased as the increasing cholesterol level in the cell. However, when the CHO cells were cultured in the medium containing ginsenosides, no significant decrease of LDL receptor population occured. The biosynthesis of protein and RNA of the above cells was higher than that of CHO cells cultured in the absence of the ginsenosides, suggesting that the ginsenosides might stimulate LDL receptor bio-synthesis. It was also observed that the ginsenosides stimulated the biosynthesis of estradiol and progesterone from cholesterol in the CHO cell. From the above results, it seemed that the ginsenosides lowers the cholesterol level by stimulating the cholesterol metablism including steroid hormone biosynthesis, resulting in the lowering of inhibitory action of cholesterol on LDL receptor biosynthesis.

  • PDF

Study on the Production and Management of Aquatic Animal : Application of ELISPOT-Assay for the Detection of Antibody Secreting Cells in Flounder, Paralichthys olivaceus (수산생물의 생산과 관리에 관한 기초연구 : ELISPOT 기법을 이용한 넙치의 항체생성 세포분석)

  • HA Jai Yi;PARK Jun-Hyo;KIM Myoung Sug;CHUNG Joon-Ki;JEONG Hyun Do
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.4
    • /
    • pp.420-426
    • /
    • 1999
  • We examined the immune response in flounder, Paralichthys olivaceus, with immunization of formalin killed Edwardsiella tarda as an antigen. The ELISPOT-assay (enzyme-linked immunospot assay) was optimized technically and applied to count the number of total and specific antibody secreting cells (TASC and SASC) in lymphocytes of different lymphatic organs. Incubation of lymphocytes on 96 well plate for more than 2.5hrs came out enough time in ELISPOT-assay for counting the antibody secreting cells in the anterior kidney and spleen. However, too much of plate-coated antigen or rabbit anti-flounder immunoglobulin for SASC or TASC counting, respectively, was appeared to decrease the sensitivity of the assay system. Specificity of the system was also confirmed by the absence of TASC in lymphocytes treated with cycloheximide to prevent protein synthesis. The peak numbers of SASC appeared at wk 3 post immunization after that there was a sharp decrease and reached to almost zero at wk 7. In the spleen and kidney, the timing and numbers of SASC on peak response were concurrent without preferential organ distribution. The specific antibody level in the sera increased rapidly between wk 2 and 3 after immunization, i.e. like the specific cellular response found with ELISPOT-assay on that period, However, the remained high level of specific serum antibody from wk 5 after immunization until the end of experiment was clearly distinguishable from the kinetics of SASC response decreased sharply.

  • PDF