• Title/Summary/Keyword: High level platform

Search Result 286, Processing Time 0.031 seconds

Implementation of High Speed Image Data Transfer using XDMA

  • Gwon, Hyeok-Jin;Choi, Doo-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.7
    • /
    • pp.1-8
    • /
    • 2020
  • In this paper, we present an implementation of high speed image data transfer using XDMA for a video signal generation / acquisition device developed as a military test equipment. The technology proposed in this study obtains efficiency by replacing the method of copying data using the system buffer in the kernel area with the transmission and reception through the DMA engine in the FPGA. For this study, the device was developed as a PXIe platform in consideration of life cycle, and performance was maximized by using a low-cost FPGA considering mass productivity. The video I/O board implemented in this paper was tested by changing the AXI interface clock frequency and link speed through the existing memory copy method. In addition, the board was constructed using the DMA engine of the FPGA, and as a result, it was confirmed that the transfer speed was increased from 5~8Hz to 140Hz. The proposed method will contribute to strengthening defense capability by reducing the cost of device development using the PXIe platform and increasing the technology level.

Distribution Characteristics between Line and Line for Indoor Air Pollutant Factors at Subway Stations in Seoul Area (서울지역 지하철역의 공기 중 오염인자의 노선별 분포 특성)

  • 김민영;라승훈;신도철;한규문;최금숙;정일현
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.2
    • /
    • pp.134-144
    • /
    • 1998
  • A comprehensive air quality monitoring was carried out to investigate the criteria concentration of air pollutant in indoor of subway stations of Seoul City. The samples were collected twice per year (the first and the second half of the year) at each sampling point from February to September in 1997. Sampling point of subway stations was ticket office and platform. The measurement of indoor air pollutants such as sulfur dioxide(SO$_2$), nitrogen dioxide(NO$_2$), carbon monoxide(CO), carbon dioxide(CO$_2$), total suspended particulate(TSP) was performed to determine the indoor air quality. Heavy metals(Pb, Cd, Cu, Cr, As, Hg) were also measured together with those air pollutants. The annual average concentration of CO$_2$ and TSP in subway stations were relatively high while those of heavy metals were within 10% of environmental recommended standard concentration in all stations. As results of regression analysis between line and line of air factors, the concentrations of CO, CO$_2$, TSP, Pb, Cd, Cr and Cu were highly correlated, but those of $SO_2, NO_2$ and Hg were not correlated. As results of regression analysis between ticket office and platform, the concentrations of heavy metals such as Cr and Cu were highly correlated. Results of oneway analysis of variance between the first and the second half of the year air factors also indicated that CO, CO$_2$, Cd, Cu, Hg were significant($\alpha$=0.01), respectively. The average contration of total suspended particulate(TSP) in subway line No. 1 was shown high concentration(200 $\mu g/m^3\cdot$ day) level.

  • PDF

Develoment of high-sensitivity wireless strain sensor for structural health monitoring

  • Jo, Hongki;Park, Jong-Woong;Spencer, B.F. Jr.;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • v.11 no.5
    • /
    • pp.477-496
    • /
    • 2013
  • Due to their cost-effectiveness and ease of installation, wireless smart sensors (WSS) have received considerable recent attention for structural health monitoring of civil infrastructure. Though various wireless smart sensor networks (WSSN) have been successfully implemented for full-scale structural health monitoring (SHM) applications, monitoring of low-level ambient strain still remains a challenging problem for WSS due to A/D converter (ADC) resolution, inherent circuit noise, and the need for automatic operation. In this paper, the design and validation of high-precision strain sensor board for the Imote2 WSS platform and its application to SHM of a cable-stayed bridge are presented. By accurate and automated balancing of the Wheatstone bridge, signal amplification of up to 2507-times can be obtained, while keeping signal mean close to the center of the ADC span, which allows utilization of the full span of the ADC. For better applicability to SHM for real-world structures, temperature compensation and shunt calibration are also implemented. Moreover, the sensor board has been designed to accommodate a friction-type magnet strain sensor, in addition to traditional foil-type strain gages, facilitating fast and easy deployment. The wireless strain sensor board performance is verified through both laboratory-scale tests and deployment on a full-scale cable-stayed bridge.

Exposure to Particles and Nitrogen Dioxide Among Workers in the Stockholm Underground Train System

  • Plato, N.;Bigert, C.;Larsson, B.M.;Alderling, M.;Svartengren, M.;Gustavsson, P.
    • Safety and Health at Work
    • /
    • v.10 no.3
    • /
    • pp.377-383
    • /
    • 2019
  • Objectives: Exposure to fine particles in urban air has been associated with a number of negative health effects. High levels of fine particles have been detected at underground stations in big cities. We investigated the exposure conditions in four occupational groups in the Stockholm underground train system to identify high-exposed groups and study variations in exposure. Methods: $PM_1$ and $PM_{2.5}$ were measured during three full work shifts on 44 underground workers. Fluctuations in exposure were monitored by a real-time particle monitoring instrument, pDR, DataRAM. Qualitative analysis of particle content was performed using inductively coupled plasma mass spectrometry. Nitrogen dioxide was measured using passive monitors. Results: For all underground workers, the geometric mean (GM) of $PM_1$ was $18{\mu}g/m^3$ and of $PM_{2.5}$ was $37{\mu}g/m^3$. The particle exposure was highest for cleaners/platform workers, and the GM of $PM_1$ was $31.6{\mu}g/m^3$ [geometric standard deviation (GSD), 1.6] and of $PM_{2.5}$ was $76.5{\mu}g/m^3$ (GSD, 1.3); the particle exposure was lowest for ticket sellers, and the GM of $PM_1$ was $4.9{\mu}g/m^3$ (GSD, 2.1) and of $PM_{2.5}$ was $9.3{\mu}g/m^3$ (GSD, 1.5). The $PM_1$ and $PM_{2.5}$ levels were five times higher in the underground system than at the street level, and the particles in the underground had high iron content. The train driver's nitrogen dioxide exposure level was $64.1{\mu}g/m^3$ (GSD, 1.5). Conclusions: Cleaners and other platform workers were statistically significantly more exposed to particles than train drivers or ticket sellers. Particle concentrations ($PM_{2.5}$) in the Stockholm underground system were within the same range as in the New York underground system but were much lower than in several older underground systems around the world.

Autonomous evaluation of ambient vibration of underground spaces induced by adjacent subway trains using high-sensitivity wireless smart sensors

  • Sun, Ke;Zhang, Wei;Ding, Huaping;Kim, Robin E.;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • The operation of subway trains induces secondary structure-borne vibrations in the nearby underground spaces. The vibration, along with the associated noise, can cause annoyance and adverse physical, physiological, and psychological effects on humans in dense urban environments. Traditional tethered instruments restrict the rapid measurement and assessment on such vibration effect. This paper presents a novel approach for Wireless Smart Sensor (WSS)-based autonomous evaluation system for the subway train-induced vibrations. The system was implemented on a MEMSIC's Imote2 platform, using a SHM-H high-sensitivity accelerometer board stacked on top. A new embedded application VibrationLevelCalculation, which determines the International Organization for Standardization defined weighted acceleration level, was added into the Illinois Structural Health Monitoring Project Service Toolsuite. The system was verified in a large underground space, where a nearby subway station is a good source of ground excitation caused by the running subway trains. Using an on-board processor, each sensor calculated the distribution of vibration levels within the testing zone, and sent the distribution of vibration level by radio to display it on the central server. Also, the raw time-histories and frequency spectrum were retrieved from the WSS leaf nodes. Subsequently, spectral vibration levels in the one-third octave band, characterizing the vibrating influence of different frequency components on human bodies, was also calculated from each sensor node. Experimental validation demonstrates that the proposed system is efficient for autonomously evaluating the subway train-induced ambient vibration of underground spaces, and the system holds the potential of greatly reducing the laboring of dynamic field testing.

A Study on Actual Usage of Information Systems: Focusing on System Quality of Mobile Service (정보시스템의 실제 이용에 대한 연구: 모바일 서비스 시스템 품질을 중심으로)

  • Cho, Woo-Chul;Kim, Kimin;Yang, Sung-Byung
    • Asia pacific journal of information systems
    • /
    • v.24 no.4
    • /
    • pp.611-635
    • /
    • 2014
  • Information systems (IS) have become ubiquitous and changed every aspect of how people live their lives. While some IS have been successfully adopted and widely used, others have failed to be adopted and crowded out in spite of remarkable progress in technologies. Both the technology acceptance model (TAM) and the IS Success Model (ISSM), among many others, have contributed to explain the reasons of success as well as failure in IS adoption and usage. While the TAM suggests that intention to use and perceived usefulness lead to actual IS usage, the ISSM indicates that information quality, system quality, and service quality affect IS usage and user satisfaction. Upon literature review, however, we found a significant void in theoretical development and its applications that employ either of the two models, and we raise research questions. First of all, in spite of the causal relationship between intention to use and actual usage, in most previous studies, only intention to use was employed as a dependent variable without overt explaining its relationship with actual usage. Moreover, even in a few studies that employed actual IS usage as a dependent variable, the degree of actual usage was measured based on users' perceptual responses to survey questionnaires. However, the measurement of actual usage based on survey responses might not be 'actual' usage in a strict sense that responders' perception may be distorted due to their selective perceptions or stereotypes. By the same token, the degree of system quality that IS users perceive might not be 'real' quality as well. This study seeks to fill this void by measuring the variables of actual usage and system quality using 'fact' data such as system logs and specifications of users' information and communications technology (ICT) devices. More specifically, we propose an integrated research model that bring together the TAM and the ISSM. The integrated model is composed of both the variables that are to be measured using fact as well as survey data. By employing the integrated model, we expect to reveal the difference between real and perceived degree of system quality, and to investigate the relationship between the perception-based measure of intention to use and the fact-based measure of actual usage. Furthermore, we also aim to add empirical findings on the general research question: what factors influence actual IS usage and how? In order to address the research question and to examine the research model, we selected a mobile campus application (MCA). We collected both fact data and survey data. For fact data, we retrieved them from the system logs such information as menu usage counts, user's device performance, display size, and operating system revision version number. At the same time, we conducted a survey among university students who use an MCA, and collected 180 valid responses. A partial least square (PLS) method was employed to validate our research model. Among nine hypotheses developed, we found five were supported while four were not. In detail, the relationships between (1) perceived system quality and perceived usefulness, (2) perceived system quality and perceived intention to use, (3) perceived usefulness and perceived intention to use, (4) quality of device platform and actual IS usage, and (5) perceived intention to use and actual IS usage were found to be significant. In comparison, the relationships between (1) quality of device platform and perceived system quality, (2) quality of device platform and perceived usefulness, (3) quality of device platform and perceived intention to use, and (4) perceived system quality and actual IS usage were not significant. The results of the study reveal notable differences from those of previous studies. First, although perceived intention to use shows a positive effect on actual IS usage, its explanatory power is very weak ($R^2$=0.064). Second, fact-based system quality (quality of user's device platform) shows a direct impact on actual IS usage without the mediating role of intention to use. Lastly, the relationships between perceived system quality (perception-based system quality) and other constructs show completely different results from those between quality of device platform (fact-based system quality) and other constructs. In the post-hoc analysis, IS users' past behavior was additionally included in the research model to further investigate the cause of such a low explanatory power of actual IS usage. The results show that past IS usage has a strong positive effect on current IS usage while intention to use does not have, implying that IS usage has already become a habitual behavior. This study provides the following several implications. First, we verify that fact-based data (i.e., system logs of real usage records) are more likely to reflect IS users' actual usage than perception-based data. In addition, by identifying the direct impact of quality of device platform on actual IS usage (without any mediating roles of attitude or intention), this study triggers further research on other potential factors that may directly influence actual IS usage. Furthermore, the results of the study provide practical strategic implications that organizations equipped with high-quality systems may directly expect high level of system usage.

Development of Multi-Core Virtual Platform for Multimedia Applications (멀티미디어 응용을 위한 멀티 코어 가상 플랫폼 개발)

  • Chang, J.Y.;Lee, H.S.;Son, M.H.;Im, S.H.;Kim, S.;Ahn, S.H.;Park, S.S.
    • Electronics and Telecommunications Trends
    • /
    • v.27 no.5
    • /
    • pp.36-43
    • /
    • 2012
  • 본고에서는 멀티미디어 응용을 위한 멀티 코어 가상 플랫폼 설계 및 검증 방법에 대해서 기술한다. 최근에 멀티미디어 응용인 MPEG-4, H.264, HEVC(High Efficiency Video Coding), 3D 및 홀로그램과 같은 대용량 데이터를 처리하기 위해 다수 개의 코어로 구성된 멀티 코어 플랫폼을 사용한다. 기존의 RTL(Register Transfer Level) 기반의 멀티 코어 플랫폼에서 멀티미디어 응용을 설계하고 검증하는데 시뮬레이션 시간에 의한 제약 사항이 존재한다. 이를 해결하기 위해 시스템 수준에서 하드웨어의 SW 모델로 구성된 가상 플랫폼을 사용한다. 가상 플랫폼은 기존의 RTL 플랫폼보다 100~200배 빠른 고속 시뮬레이션이 가능하므로 멀티미디어 응용에 따른 성능 분석 및 구조 탐색을 통해서 시스템 성능을 향상 시킬 수 있다. 본고에서는 8~32개 멀티 코어 가상 플랫폼에 H.264 디코더를 적용하여 성능 분석하는 방법과 실험 결과에 대해서 기술한다.

  • PDF

Development of a smart wireless sensing unit using off-the-shelf FPGA hardware and programming products

  • Kapoor, Chetan;Graves-Abe, Troy L.;Pei, Jin-Song
    • Smart Structures and Systems
    • /
    • v.3 no.1
    • /
    • pp.69-88
    • /
    • 2007
  • In this study, Field-Programmable Gate Arrays (FPGAs) are investigated as a practical solution to the challenge of designing an optimal platform for implementing algorithms in a wireless sensing unit for structuralhealth monitoring. Inherent advantages, such as tremendous processing power, coupled with reconfigurable and flexible architecture render FPGAs a prime candidate for the processing core in an optimal wireless sensor unit, especially when handling Digital Signal Processing (DSP) and system identification algorithms. This paper presents an effort to create a proof-of-concept unit, wherein an off-the-shelf FPGA development board, available at a price comparable to a microprocessor development board, was adopted. Data processing functions, including windowing, Fast Fourier Transform (FFT), and peak detection, were implemented in the FPGA using a Matlab Simulink-based high-level abstraction tool rather than hardware descriptive language. Simulations and laboratory tests were carried out to validate the design.

A Comparative Study on the Patterns of Technological Innovation of Bio - Industry in Korea (한국 생명공학산업의 기술혁신 패턴에 관한 연구)

  • 박정민
    • Journal of Korea Technology Innovation Society
    • /
    • v.4 no.2
    • /
    • pp.224-241
    • /
    • 2001
  • This paper is an inquiry into the patterns of technological innovation of bio - industry in Korea in comparison with the worldwide patterns. In another words, this study wants to check whether the patterns of technological innovation of bio - industry in Korea differ front those in advanced countries or not. The comparison is based on the theory of science - based industry asserted by Seol (2001) and Cho (2001). There are no specific difference in the patterns of technological innovation such as science - based innovation, capitalization of science, industries leading by scientific fields, the importance of venture firms for commercialization, high level of R&D expense to sales. Also the order of fields by size is similar to worldwide patterns. But the size of microbiology is bigger than that of worldwide patterns. The strength in microbiology may be the country specific features of Korea, like platform technology of Germany.

  • PDF

ISPLC:Intelligent Agent System based Software Programmable Logic Control (ISPLC: 지능적인 에이전트 기반 소프트웨어 PLC)

  • 조영임;심재홍
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11b
    • /
    • pp.557-560
    • /
    • 2003
  • In this paper, we developed an editor and running engine for the SoftPLC. LD is the most popular standard IEC 1131-3 PLC language in Korea and used over 90% among the 5 PLC languages. In this paper, we have developed the ISPLC(Intelligent Agent System based Software Programmable Logic Controller). In ISPLC system, LD programmed by a user is converted to IL, which is one of intermediate codes, and IL is converted to the standard C code which can be used in a commercial editor such as visual C++. In ISPLC, the detection of logical error in high level programming(C) is more efficient than PLC programming itself. ISPLC provide easy programming platform to such beginner as well as professionals. The study of code conversion of LD-> U->C is firstly tried in the world as well as KOREA.

  • PDF