• Title/Summary/Keyword: High humidity

Search Result 1,711, Processing Time 0.029 seconds

A Study on Characteristics of Indoor- Air-Quality in Interior Space Equipped with System Air-Conditioner (시스템 에어컨 설치 공간의 실내공기질 특성에 관한 연구)

  • Lee, Sang-Won;Kim, Jong-Min;Yeum, Seung-Won;Cho, Dae-Gun;Choi, Jae-Boong;Kim, Seok-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.5
    • /
    • pp.304-313
    • /
    • 2008
  • This paper investigates the indoor-air-quality (IAQ) characteristics of the interior space equipped with system air-conditioner. The behaviors of individual variables such as temperature, humidity and concentration of carbon dioxide ($CO_2$) that influence on IAQ of the interior space were characterized under various cooling conditions by numerical and experimental studies. The numerical analysis predicting the temperature behavior of the interior space was conducted, and its results showed a good agreement with the experimental ones. The $CO_2$ concentration and humidity were measured and their time dependent behaviors were monitored and analyzed. From the results, it was found that there existed the differences of the time-dependent behaviors of IAQ variables according to the locations. In addition, it is demonstrated that the large discharge angle of $45^{\circ}$ made the temperature profile more irregular and the high discharge flow of 5.34 m/s produced similar temperature profiles at three different sensing locations. Finally, the humidity of interior space was less sensitive to the changes of the air cooling conditions than the case of temperature and the $CO_2$ concentration increase mainly depended on the number of individuals inside the space.

Effect of Vibration during Distribution Process on Compression Strength of Corrugated Fiberboard Boxes for Agricultural Products Packaging (농산물 포장용 골판지상자의 수송 중 진동에 의한 압축강도 변화)

  • Shin, Joon Sub;Kim, Jongkyoung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.2
    • /
    • pp.91-100
    • /
    • 2021
  • Agricultural corrugated fiberboard packaging boxes frequently experience damage due to loading and unloading, vibration during transport, and shock by dynamic distribution condition change. This study was carried out to estimate effect of vibration during distribution process on compression strength of corrugated fiberboard boxes for agricultural products. In order to identify the degradation caused by vibration, after box packaging the agricultural products(tangerine or cucumber), the natural frequencies of the packaging boxes were measured by varying the relative humidity(50, 70 and 90%) at 25℃ temperature. Various types of corrugated fiberboard boxes were packed with tangerines and cucumbers, and the PSD plot vibration tests were conducted by utilizing the actual vibration recording results of the Gyeongbu Expressway section between Seoul and Gimcheon. As a result of the experiment, the decrease in compression strength of the box was relatively low in DW-AB, and the decrease in compression strength of the SW-A 0201(RSC) type box was the highest at 20.49%. In particular, both SW-A and DW-AB showed low compression strength degradation rates for open folder type boxes. The moisture content varies depending on the type of the box or agricultural products, and the enclosed 0201(RSC) type box was generally higher than the open folder or bliss type box, which is believed to be the reason for the decrease in compression strength of RSC type box due to humidity. By the agricultural product, the percentage of decrease in compression strength of box packed with cucumbers was especially high.

Thermal Conductivity of Dry and Saturated Cores from Ulleung Island in a Constant Temperature and Humidity Condition (항온항습 환경에서 울릉도 시추코어의 건조·수포화 열전도도)

  • Lee, Keun-Soo;Lee, Sang Kyu;Lee, Tae Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.4
    • /
    • pp.220-230
    • /
    • 2018
  • When thermal conductivity of rock is measured with PEDB (Portable Electronic Divided Bar) in a laboratory, it can be greatly influenced by the change of room temperature. Therefore, measuring the thermal conductivity in a thermo-hygrostat is necessary, where it can remain in its constant temperature and humidity condition. In this study, a system for thermal conductivity measurement in a thermo-hygrostat has been set up and the thermal conductivities for the 45 samples collected from GH3 and GH4 boreholes in Ulleung Island have been measured both in dry and saturated conditions. Also, the correlations between those thermal conductivities, density, and effective porosity have been discussed. As a result of correlation analysis among the thermal conductivity, density, and effective porosity, it showed higher correlation with dry samples than saturated samples. Especially, thermal conductivity ratio between saturated and dry conditions shows very high correlation ($R^2=0.90$) with effective porosity.

Research on sealing ability of granular bentonite material after 10.5 years of engineered barrier experiment

  • Ni, Hongyang;Liu, Jiangfeng;Pu, Hai;Zhang, Guimin;Chen, Xu;Skoczylas, Frederic
    • Geomechanics and Engineering
    • /
    • v.27 no.6
    • /
    • pp.583-594
    • /
    • 2021
  • The gas permeability behavior of unsaturated bentonite-based materials is of major importance for ensuring effective sealing of high-level radwaste repositories. This study investigated this by taking a sample of Granular Bentonite Material (GBM) at the end of the Engineered Barrier Emplacement (EB) experiment in the Opalinus Clay, placing it under different humidity conditions until it achieved equilibration, and testing the change in the gas permeability under loading and unloading. Environmental humidity is shown to have a significant effect on the water content, saturation, porosity and dry density of GBM and to affect its gas permeability. Higher sensitivity to confining pressure is exhibited by samples equilibrated at higher relative humidity (RH). It should be noted that for the sample at RH=98%, when the confining pressure is raised from 1 MPa to 6 MPa, gas permeability can be reduced from 10-16 m2 to 10-19 m2, which is close to the requirements of gas tightness. Due to higher water content and easier compressibility, samples equilibrated under higher RH show greater irreversibility during the loading and unloading process. The effective gas permeability of highly saturated samples can be increased by 2-3 orders of magnitude after 105℃ drying. In addition, cracks possibly occurred during the dehydration and drying process will become the main channel for gas migration, which will greatly affect the sealing performance of GBM.

Design of Smartfarm Environment Controller Using Fuzzy Control Method and Human Machine Interface for Livestock Building (퍼지 제어법과 HMI를 이용한 축사용 스마트팜 환경 제어기 설계)

  • Byeong-Ro Lee;Ju-Won Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.3
    • /
    • pp.129-136
    • /
    • 2022
  • The most important part of the smart livestock building system is to maintain a breeding environment so that livestock can grow to high quality despite changes in the internal and external atmospheric environment. Especially, it is very important to maintain the temperature and humidity in the livestock building because various diseases occur during the summer and winter. To manage the environment suitable for livestock, a smartfarm system for livestock building is applied, but it is very expensive. In this study, we propose a hardware design and control method for low cost system based on HMI and fuzzy control. To evaluate the performance of the proposed system, we did a simulation experiment in the atmospheric conditions of summer and winter. As a result, it showed the performance of minimizing the temperature and humidity stress of livestock. And when applied to the livestock building, the proposed system showed stable control performance even in the change of the external atmospheric environment. Therefore, as with these results, if proposed system in this study is applied to the smart farm system, it will be effective in managing the environment of livestock building.

Negative association between high temperature-humidity index and milk performance and quality in Korean dairy system: big data analysis

  • Dongseok Lee;Daekyum Yoo;Hyeran Kim;Jakyeom Seo
    • Journal of Animal Science and Technology
    • /
    • v.65 no.3
    • /
    • pp.588-595
    • /
    • 2023
  • The aim of this study was to investigate the effects of heat stress on milk traits in South Korea using comprehensive data (dairy production and climate). The dataset for this study comprised 1,498,232 test-day records for milk yield, fat- and protein-corrected milk, fat yield, protein yield, milk urea nitrogen (MUN), and somatic cell score (SCS) from 215,276 Holstein cows (primiparous: n = 122,087; multiparous: n = 93,189) in 2,419 South Korean dairy herds. Data were collected from July 2017 to April 2020 through the Dairy Cattle Improvement Program, and merged with meteorological data from 600 automatic weather stations through the Korea Meteorological Administration. The segmented regression model was used to estimate the effects of the temperature-humidity index (THI) on milk traits and elucidate the break point (BP) of the THI. To acquire the least-squares mean of milk traits, the generalized linear model was applied using fixed effects (region, calving year, calving month, parity, days in milk, and THI). For all parameters, the BP of THI was observed; in particular, milk production parameters dramatically decreased after a specific BP of THI (p < 0.05). In contrast, MUN and SCS drastically increased when THI exceeded BP in all cows (p < 0.05) and primiparous cows (p < 0.05), respectively. Dairy cows in South Korea exhibited negative effects on milk traits (decrease in milk performance, increase in MUN, and SCS) when the THI exceeded 70; therefore, detailed feeding management is required to prevent heat stress in dairy cows.

Effects of Relative Humidity and Fiber Properties on the Moisture Permeability of Multilayer Fabric Systems (환경 및 섬유 특성이 멀티레이어 직물시스템의 투습성에 미치는 영향)

  • Suhyun Lee;Sohyun Park
    • Fashion & Textile Research Journal
    • /
    • v.25 no.1
    • /
    • pp.119-126
    • /
    • 2023
  • This study aimed to determine the effects of relative humidity and fiber properties on the moisture permeability of multilayer systems by measuring water vapor transmission in the overlapping condition of various fabrics. The results confirmed that the property of the fabric in contact with the humid environment affects the moisture permeability. If the layer facing the humid environment is hydrophobic and the layer facing the dry environment is superhydrophobic, water vapor transmission increases by up to 17.8% compared to the opposite conditions. Comparing the correction values of the water vapor transmission reflecting the thickness of the specimen under the multilayer condition showed that permeability was higher when the hydrophilic or hydrophobic layer was facing the humid environment. The opposite was true from the "push-pull" effect of absorption mechanism. In the case of moisture permeability, the more hydrophilic the surface facing the humid environment, the more permeable that water vapor diffuses and passes through. It was concluded that the "pull-push" effect, in which water vapor diffuses widely through the hydrophilic facing a humid environment and then passes through the hydrophobic layer, contributes to the improvement of permeability. Permeability differed according to the multilayer overlapping condition. When the relative humidity was high, the "pull-push" effect was insignificant. This is caused by water droplets absorption after the partial migration of water due to condensation. These results suggest that the overlapping conditions and properties of fabrics should vary depending on heavy sweating or not.

A Study on the Adsorption Properties of Diisopropyl Methyl Phosphonate on Chromium-Based Metal-Organic Frameworks Using Acetic Acid as a Modulator (아세트산을 조절인자로 제작한 크롬 기반 금속유기골격체의 diisopropyl methyl phosphonate 흡착 특성 연구)

  • Sangjo Jeong
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.596-602
    • /
    • 2023
  • Chromium-based metal-organic frameworks (MIL-101(Cr)) were synthesized, and their potential use as a filling material for gas masks or protective clothing was assessed through adsorption experiments using diisopropyl methyl phosphate (DIMP) as a simulant for chemical warfare agents. MIL-101(Cr) was prepared using acetic acid (MIL-101(Cr)-A) and sodium hydroxide (MIL-101(Cr)-N) as modulators. The use of acetic acid as a modulator resulted in a larger specific surface area and a higher DIMP adsorption capacity. MIL-101(Cr)-A absorbed approximately 160% of its own weight of moisture when exposed to an environment with a relative humidity of 90% for 10 days, surpassing other adsorbents such as activated carbon. The DIMP adsorption capacity of MIL-101(Cr)-A decreased to about 40% of its initial adsorption capacity after 24 hours of exposure to an environment with a relative humidity of 90%. However, this capacity is still higher compared to that of activated carbon used in commercial gas masks, suggesting a high potential for future use as a filling material for gas masks or protective clothing.

Design of multi-sensor system for comprehensive indoor air quality monitoring

  • TaeHeon Kim;SungYeup Kim;Yoosin Kim;Min Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.7
    • /
    • pp.149-158
    • /
    • 2024
  • This study aims to design and develop AirDeep-Room, a multi-sensor system for monitoring air quality in various indoor environments. The system measures CO2, TVOC, particulate matter, temperature, and humidity in real-time. By integrating multiple sensors, AirDeep-Room allows convenient correlation analysis using low data format in real-time. The sensor system was installed in a server room and a classroom. Data analysis showed a negative correlation of -0.24 between temperature and humidity in the server room, and a positive correlation of 0.43 in the classroom, indicating different interactions. A high correlation (r=0.69) between the number of students and concentrations of CO2 and TVOC demonstrated the significant impact of occupancy on air quality. AirDeep-Room effectively manages air quality across various environments and provides essential data for improving air quality in densely populated areas.

Damage Characteristics of Korean Traditional Textiles by Formaldehyde (포름알데히드에 의한 전통직물의 손상 특성)

  • Kim, Myoung Nam;Lim, Bo A;Lee, Sun Myung
    • Journal of Conservation Science
    • /
    • v.30 no.4
    • /
    • pp.353-364
    • /
    • 2014
  • Formaldehyde(HCHO) may have a damage effect on Korean traditional textiles, because concentration is high and occurrence frequency is frequent at the exhibition room and storage area. Total 20 specimens were prepared using 4 different materials (silk, cotton, ramie, hemp) after dyeing with 5 colors (undyed, red, yellow, blue, black). The specimens were exposed to HCHO gas in the test chamber. The gas acceleration test was conducted to identify the deterioration of Korean traditional textiles according to HCHO concentration(0.5, 1, 10, 100, 500ppm), to temperature-humidity condition at HCHO 500ppm, and deterioration conditions at HCHO 500ppm. Optical, chemical, and physical evaluation was carried out after the exposure. The results, color difference, grey scale rating, formate($HCO_2{^-}$) of some textiles increased at 500ppm, while pH decreased at 500ppm. Also, color difference, grey scale rating, formate($HCO_2{^-}$) of some textiles increased double damage at high temperatures & humidity, high humidity condition. But, damages of accelerated degradation textiles were slight, because of degradation degree and degradation products. The results suggest that determined the damage to the korean traditional textile, damage level, damage-weighted condition, damage to accelerated degradation textiles. In addition, formaldehyde damaged to yellowing of red textiles, bleaching of accelerated degradation textiles, formic acid damaged to bleaching of total 20 specimens.