• Title/Summary/Keyword: High frequency motor

Search Result 554, Processing Time 0.028 seconds

Control Characteristics of Current Controlled PWM Using Vector Control in VSI-IM Drive System (VSI-IM 구동 시스템에 벡터제어를 이용한 전류제어 PWM 방식의 제어특성)

  • Dong Hwa Chung
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.12
    • /
    • pp.38-50
    • /
    • 1991
  • A current-controlled scheme of pulse width modulation voltage source inverter (PWM VSI) has attracted considerable attention due to its fast response with current limit and especially suitable for potentially high performance applications such as AC motor drives and UPS systems. These features yield near-sinusoidal currents in the load with reduced current peaks, lower inverter switching frequency and reduce inverter and load stresses. A high performance current-controlled inverter must have a quick response in transient state and low harmonic current in steady state. This paper compares and shows the controlled-characteristics with hysteresis controller(HC), ramp comparison controller(RCC) and predictive controller(PC) of PWM inverter to control actual current of VSI-IM.

  • PDF

New Switching Pattern for the Paralleling of SRM Low Voltage Inverter (저전압형 SRM 인버터의 병렬운전 위한 새로운 스위칭)

  • 이상훈;박성준;원태현;안진우;이만형
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.6
    • /
    • pp.359-367
    • /
    • 2004
  • The switched reluctance motor(SRM) has considerable potential for industrial applications because of its high result lily as a result of the absence of rotor windings. In some applications with SRM, paralleling strategy is often used for cost saving, increasing of current capacity and system reliability. A SRM inverter has very low ,switching frequency. This results in reducing the burden for a high-speed of the gate-amp interface circuit. and the linearity of optocoupler is used to protect the instantaneous peak current for the stable operation. In this paper, series resistor is used to equal the current sharing of each switching device and a linear gate-amp is proposed to protect the instantaneous peak current which occurs in transient state. The proposed paralleling strategy is verified by experimental results.

Efficient Switch Mode Power Supply Design with Minimum Components for 5W Output Power

  • Singh, Bhim;Chaturvedi, Ganesh Dutt
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.79-86
    • /
    • 2009
  • This paper presents a flyback technology in power conversion aimed at increasing efficiency and power density, reducing cost and using minimum components in AC-DC conversion. The proposed converter provides these features for square waveforms and constant frequency PWM. It is designed to operate in a wide input voltage range of 75-265VAC RMS with two output voltages of 5V and 20V respectively and full load output power of 5W. The proposed converter is suitable for high efficiency and high power density application such as LCDs, TV power modules, AC adapters, motor control, appliance control, telecom and networking products.

Hybrid Sinusoidal-Pulse Charging Method for the Li-Ion Batteries in Electric Vehicle Applications Based on AC Impedance Analysis

  • Hu, Sideng;Liang, Zipeng;He, Xiangning
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.268-276
    • /
    • 2016
  • A hybrid sinusoidal-pulse current (HSPC) charging method for the Li-ion batteries in electric vehicle applications is proposed in this paper. The HSPC charging method is based on the Li-ion battery ac-impedance spectrum analysis, while taking into account the high power requirement and system integration. The proposed HSPC method overcomes the power limitation in the sinusoidal ripple current (SRC) charging method. The charger shares the power devices in the motor inverter for hardware cost saving. Phase shifting in multiple pulse currents is employed to generate a high frequency multilevel charging current. Simulation and experimental results show that the proposed HSPC method improves the charger efficiency related to the hardware and the battery energy transfer efficiency.

A Study on the Insulation Performance Improvement of Induction Motors Fed by IGBT PWM Inverter (IGBT PWM 인버터 구동 유도전동기의 절연성능 향상기술 연구)

  • Hwang D.H.;Park D.Y.;Kim Y.J.;Lee Y.H.;Kim D.H.;Lee I.W.
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.335-339
    • /
    • 2001
  • The recent advancements in power electronic switching devices have enabled high frequency switching operation and have improved the performance of pulse-width modulated (PWM) inverters for driving induction motors. But, the insulation failures of stator winding have attracted much concern due to high dv/dt of IGBT PWM inverter. In this paper, the test results for evaluation on the stator winding insulation of low-voltage induction motors for IGBT PWM inverter applications are presented. The insulation characteristics are analyzed with partial discharge and dissipation factor tests. Also, insulation breakdown tests by switching pulse voltage are performed. An effective insulation technique to enhance the insulation strength is suggested from the test results.

  • PDF

A Method for $\frac{dv}{dt}$ suppression during switching of inverter (인버터 스위칭시 $\frac{dv}{dt}$ 억제 방법)

  • Suh, Duk-Bae;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.156-158
    • /
    • 1994
  • In recent days, the various adjustable speed drives are widely employed at the industrial applications for the purpose of energy saving and speed control. In particular, for the machine control applications. the switching frequency is required to be increased for better dynamic performance of the drive. Moreover, this also leads to the reduction of the switching loss of the device. For IGBT (Insulated Gate Bipolar Transistor), the most widely used switching device in the inverters below the 100[kW] range, the falling and falling time is of the order about $200{\sim}300[ns]$. Therefore unexpected phenomena occurs such as voltage spikes due to high gradient of current at the switching instant, the weakening of motor insulation due to high gradient of voltage. In this paper, a new voltage gradient suppression technique is presented in both theoretically and experimentally.

  • PDF

Development of Beam Rotating Actuator Based on Voice Coil Motor Type for Mulit-beam Optical Disc System (다중 빔 광디스크 시스템을 위한 자기 구동형 빔 회전 구동기의 개발)

  • Lee, Cheong-Hee;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.83-88
    • /
    • 2000
  • multi-beam optical drive is a method to improve the data transfer rate for the optical disc systems by parallel recording and reading on neighboring multi-tracks. In this paper, the beam rotating actuator, which is necessary for the multi-bean optical disc drive to from beam spots on multi-tracks simultaneously, has been developed. The Voice Coil Motor is used as a drive mechanism for high resolution and small size of the actuator. And rotating guide based on link structure is designed for frictionless and axisless rotation of rotating part including dove prism and for rotating in axis of geometric center of dove prism. The characteristics of the actuator are experimented by laser vibrometer, Polytec OFV1102 and a dynamic analyzer, HP35670A. It shows that the actuator has good linearity, rotating range $\pm0.34^\circ$, minimum rotating angle $0.0066^\circ$and natural frequency 113.9Hz. Therefore the actuator can be applied in a multi-beam optical disc system.

  • PDF

Performance Enhancement of RMRAC Controller for Permanent Magnent Synchronous Motor using Disturbance compensator (외란보상기를 이용한 영구자석 동기전동기에 대한 참조모델 견실적응제어기의 성능개선)

  • Jin, Hong-Zhe;Lim, Hoon;Lee, Jang-Myung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.845-851
    • /
    • 2008
  • A simple RMRAC (Robust Model Reference Adaptive Control) scheme for the PMSM (Permanent Magnent Synchronous Motor) is proposed in the synchronous frame. A current control of PMSM is the most inner loop of electro-mechanical driving systems and it requires a fast and simple control law to play a foundation role in the control hierarchy. In the proposed synchronous current model, the input signal is composed of a calculated voltage by proposed adaptive laws and real system disturbance. The gains of feed-forward and feedback controllers are estimated by the proposed modified Gradient method respectively, where the system disturbances are assumed as filtered current tracking errors. After the estimation of the system disturbances from the tracking errors, the corresponding voltage is fed forward to control input voltage to compensate for the disturbances. The proposed method is robust against high frequency disturbance and has a fast dynamic response. It also shows a good real-time performance due to it's simplicity of control structure. Through the simulations and real experiments, efficiency of the proposed method is verified.

Design of a Linear Ultrasonic Actuator for Small Lens Actuation (초소형 렌즈 구동을 위한 선형 초음파 구동기 설계)

  • Kwon, Tae-Seong;Choi, Yo-Han;Lee, Seung-Yop
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.4
    • /
    • pp.251-256
    • /
    • 2006
  • There is a great demand of micro-actuators for mobile information devices such as SFF optical drives and mobile phone cameras. However, the magnetic coils used in conventional electromagnetic motors are a major obstacle for the miniaturization because of their complicated structures and large power consumption. In this paper, a linear ultrasonic motor to actuate focusing lens of mobile devices is proposed. The new actuator uses a ring type bimorph piezoelectric material, and $d_{31}$ mode is adopted for applying linear motion. The interaction between inertia force and friction force makes linear motion by high-frequency saw signal input. The saw signal gives steady forces on the one direction by asymmetric inclination property of the signal itself on time domain. A commercial FEM(ANSYS) was used in this investigation for simulating structural analysis, identification of dynamic property, such as resultant displacement and coupled analysis with piezoelectric material. To evaluate the performance of the new design, a prototype was manufactured and experiments were carried out. Experimental results show the actuator motion of 5.4 mm/s at 10V saw signal of 41 kHz.

  • PDF

Fabrication and Characteristics of Flat-type $L_{-}$-$B_{8}$ Mode Ultrasonic Motors (평판형 종($L_{-}$-굴곡($B_{8}$)모드 초음파 전동기의 제작과 특성)

  • U, Sang-Ho;Lee, Eun-Hak;Kim, Jin-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.7
    • /
    • pp.292-297
    • /
    • 2002
  • In this paper, a flat-type $L_{-}$-$B_{8}$ mode Ultrasonic Motor[USM] having the size of 80 x 20 x ${1.5}mm^3$($l{\times}\omega{\times}t$) was designed and fabricated to examine the characteristics of an ultrasonic vibration. We used ANSYS simulation program based on FEM to get the optimum design of this USM. As results of experiment, the fastest speed of revolution(v), the maximum torque(T) and the efficiency(n) were 37.5cm/s, 5.0 mN.m and 1.17% when 27.9KHz, 150N, 50V were applied respectively. And this flat-type $L_{-}$-$B_{8}$ mode USM could be controlled the speed of rotor revolution by applied voltage, frequency and pre-load of rotor as well as showed the characteristics of typical drooping torque-speed, large torque and high speed. So, we think that this flat-type $L_{-}$-$B_{8}$ mode USM has characteristics of enough torque and velocity to be usable for applications in forwarding device of an electric card or a paper, etc.