• Title/Summary/Keyword: High frequency induction heating

Search Result 244, Processing Time 0.03 seconds

A Study on the Flat-Type Induction Heating of Steel Plate (강판표면의 유도가열에 관한 연구)

  • Yun, Jin-Oh;Yang, Young-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.948-954
    • /
    • 2004
  • Induction heating is a process that is accompanied with magnetic and thermal situation. When the high-frequency current flows in the coil, induced eddy current generates heat to conductor. To simulate an induction and induction heating process, the finite element analysis program was developed. A coupling method between the magnetic and thermal routines was developed. In the process of magnetic analysis and thermal analysis, magnetic material properties and thermal material properties depending on temperature are taken into consideration. In this paper, to predict the angular deformation, temperature difference and the shape of heat affected zone were discussed. Also appropriate coil shape and other process variables for maximum angular deformation were proposed.

A Study on the Thermal Analysis of Induction Hooting Cooker with Finite Element Method (유한요소법에 의한 IH-Cooker의 열해석에 관한 연구)

  • Oh, Hong-Seok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.1
    • /
    • pp.80-85
    • /
    • 2003
  • Recently, induction heating cooker(IH-Cooker) is very interested for high efficiency, the quickness of heating time and the convenient regulation of heating spot. In this paper, we proposed the magneto-thermal analysis of an induction heating cooker(IH-Cooker) as an efficient design, and analyzed the magnetic fold intensity inside the axisymmetric shaped cooker using three-dimensional axisymmetric finite element method(Flux2D) and the effectual heat source was obtained by ohmic losses from eddy currents induced in the cooker. Also, we presented the temperature characteristics of the IH-Cooker according to input frequency and relative permeability in stainless parts and in aluminum parts.

Centrifugal Induction Coating of Metallic Powders

  • Natanovich, Gafo Yuri;Pavlovich, Kashitsyn Leonid;Aleksandrovich, Sosnovsky Igor
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.985-986
    • /
    • 2006
  • Principal peculiarities of technology for applying coatings of metallic powders on internal surfaces of hollow cylindrical parts by centrifugal method with induction heating from internal surface of part are examined. It is shown that most effective checking and regulating method of sintered powder layer is monitoring the high-frequency current generator power upon contactless pickup indications of external surface temperature of rotating part.

  • PDF

Zero Voltage Switching Boost H-Bridge AC Power Converter for Induction Heating Cooker

  • Kwon, Soon-Kurl;Saha, Bishwajit
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.4
    • /
    • pp.19-27
    • /
    • 2007
  • This paper presents a novel soft-switching PWM utility frequency AC to high frequency AC power conversion circuit incorporating boost H-bridge inverter topology, which is more suitable and acceptable for cost effective consumer induction heating applications. The operating principle and the operation modes are presented using the switch mode equivalent circuits and the operating voltage and current waveforms. The performances of this high-frequency inverter using the latest IGBTs are illustrated, which includes high frequency power regulation and actual efficiency characteristics based on zero voltage soft-switching(ZVS) operation ranges, and the power dissipation as compared with those of the conventional type high frequency inverter. In addition, a dual mode control scheme of this high frequency inverter based on asymmetrical pulse width modulation(PWM) and pulse density modulation(PDM) control scheme is discussed in this paper in order to extend the soft switching operation ranges and to improve the power conversion efficiency at the low power settings. The power converter practical effectiveness is substantially proved based on experimental results from practical design example.

Design Methodology of Series Resonant Converter and Coil of Induction Heating Applications for Heating Low Resistance IH-Only Container (낮은 저항의 IH 전용용기를 가열할 수 있는 유도 가열 컨버터와 코일 설계)

  • Jeong, Si-Hoon;Park, Hwa-Pyoeng;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.1
    • /
    • pp.24-31
    • /
    • 2018
  • An induction heating (IH) resonant converter, as well as its coil design method, is proposed in this study to improve the heat capability of low- and high-resistance IH vessels. Conventional IH resonant converters have been designed only for heating high-resistance containers designed for IH application. Thus, the primary current in the resonant tank becomes extremely high to transfer the rated power when the converter heats the low-resistance vessel. As a result, the rated power cannot be transferred due to overcurrent flows against the rated switch current. Hence, the optimal number of coil turns and proper operating frequency to heat high- and low-resistance vessels are proposed in this study by analyzing an IH load model. Simulation and experimental results using a 2.4 kW prototype resonant converter and its IH coil validate the proposed design.

Innovative Electromagnetic Induction Eddy Current-based Far Infrared Rays Radiant Heater using Soft Switching PWM Inverter with Duty Cycle Control Scheme

  • Tanaka H.;Sadakata H.;Muraoka H.;Okuno A.;Hiraki E.;Nakaoka M.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.64-68
    • /
    • 2001
  • This paper presents an innovative prototype of a new conceptual electromagnetic induction heated type far infrared rays radiant heating appliance using the voltage-fed edge-resonant ZVS-PWM high frequency inverter using IGBTs for food cooking and processing which operates under a constant frequency variable power regulation scheme. This power electronic appliance with soft switching high frequency inverter using IGBTs has attracted special interest from some advantageous viewpoints of safety, cleanliness, compactness and rapid temperature response, which is more suitable for consumer power electronics applications.

  • PDF

Design and Hardware Verification of Power Conversion System for GaN-HEMT Based Anyplace Induction Cooktop (GaN-HEMT 기반 Anyplace Induction Cooktop용 전력변환장치 설계 및 성능 검증)

  • Kwon, Man-Jae;Jang, Eun-Su;Park, Sang-Min;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.6
    • /
    • pp.451-458
    • /
    • 2020
  • In this study, a trade-off analysis of a power conversion system (PCS) is performed in accordance with a power semiconductor device to establish the suitable operating frequency range for the anyplace induction heating system. A resonant network is designed under each operating frequency condition to compare and analyze the PCS losses depending on the power semiconductor device. On the basis of the simulation results, the PCS losses and frequency condition are calculated. The calculated results are then used for a trade-off analysis between Si-MOSFET and GaN-HEMT based on PCS. The suitable operating frequency range is determined, and the validity of the analysis results is verified by the experiment results.

Selective Dual Duty Cycle Controlled High Frequency Inverter Using a Resonant Capacitor in Parallel with an Auxiliary Reverse Blocking Switch

  • Saha, Bishwajit;Suh, Ki-Young;Kwon, Soon-Kurl;Mishima, Tomokazu;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.118-123
    • /
    • 2007
  • This paper presents a new ZCS-PWM high frequency inverter. Zero current switching operation is achieved in the whole load range by using a simple auxiliary reverse blocking switch in parallel with series resonant capacitor. Dual duty cycle control scheme is used to provide a wide range of high frequency AC output power regulation that is important in many high frequency inverter applications. It found that a complete soft switching operation can be achieved even for low power setting ranges by introducing high-frequency dual duty cycle control scheme. The proposed high frequency inverter is more suitable for consumer induction heating(IH) applications. The operation and control principle of the proposed high frequency inverter are described and verified through simulated results.

Implementation of Low Frequency Welding Pre-heating System Using Induction Heating (유도가열 기법을 이용한 저주파 용접예열 시스템 구현)

  • Yang, Juyeong;Kim, Soochan;Park, Junmo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.2
    • /
    • pp.61-67
    • /
    • 2018
  • Welding preheating means that the surface of the base material to which the metal is welded before the main welding is heated to a constant temperature. It prevents the cracks of the adjacent influences such as reduction of material hardening degree by controlling the cooling rate, suppression of segregation of impurities, prevention of thermal deformation, and moisture removal. For this reason, it is a necessary operation for high quality welding. Induction heating is an efficient heating method that converts electric energy into heat energy by applying electromagnetic induction phenomenon. Compared with combustion heat generated by gas and liquid, it is clean, stable, and economical as well as rapid heating. It can be heated regardless of the shape, depth and material of the heating body by modifying the shape of the frequency and the coil with a simple structure. In this paper, we implemented a low frequency welding preheating system using induction heating technique and observed the temperature changes of coil resistance, inductance and automotive transmission parts according to the height of each transmission in winding coil for three kinds of automotive transmission parts. We confirmed that the change of current is a very important factor in the low frequency heating.

A Study on Joining Technology of 3D Printed Metal-polymer Interlocking Structures Using an Induction Heating Process (3D 프린팅 된 금속-고분자 맞물림 구조의 유도 가열 공정을 이용한 접합 기술 연구)

  • Yuk, Ju-Chan;Kim, Yeong-Seo;Park, Suk-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.87-93
    • /
    • 2022
  • The demand for metal-polymer joining technology have been increasing, especially in the industrial fields of automotive and aerospace, which require the manufacturing of various lightweight parts. Conventional joining processes have technical hurdles on aspects such as thermal degradation, need for chemical surface treatment, or complicated process settings. These issues can be alleviated by employing interlocking structures for the metal-polymer joined interface. In this study, we joined 3D-printed metal and polymer parts, which were featured with 3D-printed interlocking structures at their interface. By using high frequency induction heating, the joined region could be locally heated to reduce the thermal degradation and distortion of polymer parts. In addition, through the adjustment of interface morphologies and compression conditions, the polymer flow could be optimized to completely fill the interlocking grooves on metal parts, thereby achieving high joining strength. This suggests feasible guidelines for manufacturing metal-polymer joined structures involving 3D-printed architectures.