• 제목/요약/키워드: High frequency Link

검색결과 324건 처리시간 0.024초

Utililty-Interfaced High-Frequency Flyback Transformer Linked Sinewave Pulse Modulated Inverter for a Small Scale Renewable Energy Conditioner

  • Chandhaket, Srawouth;Koninish, Yoshihiro;Nakaoka, Mutsou
    • Journal of Power Electronics
    • /
    • 제2권2호
    • /
    • pp.112-123
    • /
    • 2002
  • This paper presents a novel prototype of the utility AC power interfaced soft-switching sinewave pulse modulated inverter using the high-frequency flyback for the small scale distributed renewable energy power conditioner. The proposed cricuit with a high-frequency isolation link has a funtion of electrical isolation, which is more cost-effective and reliable for the small-scale distributed renwal energy utilization system from a safety point of riew. The discontinuous conduction mode(DCM) operation of the high-frequency flyback transformer is adopted to establish a simple and low-cost circuit configuration and control scheme. For the simplicity, the circuit operating principle is described on the basis of the modified conventional full bridge inverter, whitch is the typical conventional high-frequency full-bridge inverter employing the high requency flyback transformer to eanble the effictive function of the electrical isolation. Than, the new circuit topology of the unility-interfaced soft-switching sinewave pulse modulated inverter using IGBTs is proposed. The proposed cricuit topology is additionally composed of the auxiliary power regenerating snubber cricuits, which are also mathematically analyzed for the parameter desigen settings. Finally, the performance of the propose inverter is evaluated on the basis of computer-aid simulation. It is noted that the sinewave pulse modulated output current of the inverter is synchronous to the AC main voltage.

Design Guidelines for a Capacitive Wireless Power Transfer System with Input/Output Matching Transformers

  • Choi, Sung-Jin
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권6호
    • /
    • pp.1656-1663
    • /
    • 2016
  • A capacitive wireless power transfer (C-WPT) system uses an electric field to transmit power through a physical isolation barrier which forms a pair of ac link capacitors between the metal plates. However, the physical dimension and low dielectric constant of the interface medium severely limit the effective link capacitance to a level comparable to the main switch output capacitance of the transmitting circuit, which thus narrows the soft-switching range in the light load condition. Moreover, by fundamental limit analysis, it can be proved that such a low link capacitance increases operating frequency and capacitor voltage stress in the full load condition. In order to handle these problems, this paper investigates optimal design of double matching transformer networks for C-WPT. Using mathematical analysis with fundamental harmonic approximation, a design guideline is presented to avoid unnecessarily high frequency operation, to suppress the voltage stress on the link capacitors, and to achieve wide ZVS range even with low link capacitance. Simulation and hardware implementation are performed on a 5-W prototype system equipped with a 256-pF link capacitance and a 200-pF switch output capacitance. Results show that the proposed scheme ensures zero-voltage-switching from full load to 10% load, and the switching frequency and the link capacitor voltage stress are kept below 250 kHz and 452 V, respectively, in the full load condition.

계통선 연결형 인버터 시스템 구성에 관한 연구 (A PWM Controlled High Frequency Link Inverter for Utility Interface Application)

  • 조기연;유동욱;김은수;배진호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.466-470
    • /
    • 1991
  • In this paper, full bridge inverter with IGBT is proposed. By Controlling phase angle difference between 2 arms, PWM controlled high frequency link inverter has VVVF capability. For the simplicity, flexibility and compactness of control circuit, 16 bit single chip microcontroller 8797 BH is used and its characteristic is examined through experiment.

  • PDF

Boost-Half Bridge Single Power Stage PWM DC- DC Converters for PEM-Fuel Cell Stacks

  • Kwon, Soon-Kurl;Sayed, Khairy F.A.
    • Journal of Power Electronics
    • /
    • 제8권3호
    • /
    • pp.239-247
    • /
    • 2008
  • This paper presents the design of 1 kW prototype high frequency link boost half bridge inverter-fed DC-DC power converters with bridge voltage-doublers suitable for small scale PEM fuel cell systems and associated control schemes. The operation principle of this converter is described using fuel cell modeling and some operating waveforms. The switching mode equivalent circuits are based on simulation results and a detailed circuit operation analysis at soft-switching conditions.

Utility-Connected Solar Power Conditioner Using Edge-Resonant Soft Switching Duty Cycle Sinewave Modulated Inverter Link

  • Ogura, Koki;Chandhaket, Srawouth;Nakaoka, Mutsuo;Terai, Haruo;Sumiyoshi, Shinichiro;Kitaizumi, Takeshi;Omori, Hideki
    • Journal of Power Electronics
    • /
    • 제2권3호
    • /
    • pp.181-188
    • /
    • 2002
  • The utility interfaced sinewave modulation Inverter for the solar photovoltaic power conditioner with a high frequency transformer is presented for residential applications. As compared with the conventional full-bridge hard switching slnewave PWM inverter with a high frequency link, the simplest single-ended edge-resonant soft switching sinewave inverter with a sinewave duty cycle pulse control scheme is implemented, resulting in size and weight reduction, low cost and high efficiency This paper presents a prototype system of the sinewave zero voltage soft switching sinewave inverter for solar power conditioner, along with its operating principle and unique features. In addition to these, this paper discusses a control implementation to deliver high quality output current. Major design of each component and the power loss analysis under actual power processing is also discussed and evaluated from an experimental point of view A newly developed utility-connected sinewave power conditioning circuit which achieves 92.5% efficiency under 4kW output is demonstrated.

DC Rail Side Series Switch and Parallel Capacitor Snubber-Assisted Edge Resonant Soft-Switching PWM DC-DC Converter with High-Frequency Transformer Link

  • Morimoto, Keiki;Fathy, Khairy;Ogiwara, Hiroyuki;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • 제7권3호
    • /
    • pp.181-190
    • /
    • 2007
  • This paper presents a novel circuit topology of a DC bus line series switch and parallel snubbing capacitor-assisted soft-switching PWM full-bridge inverter type DC-DC power converter with a high frequency planar transformer link, which is newly developed for high performance arc welding machines in industry. The proposed DC-DC power converter circuit is based upon a voltage source-fed H type full-bridge soft-switching PWM inverter with a high frequency transformer. This DC-DC power converter has a single power semiconductor switching device in series with an input DC low side rail and loss less snubbing capacitor in parallel with the inverter bridge legs. All the active power switches in the full-bridge arms and DC bus line can achieve ZCS turn-on and ZVS turn-off transition commutation. Consequently, the total switching power losses occurred at turn-off switching transition of these power semiconductor devices; IGBTs can be reduced even in higher switching frequency bands ranging from 20 kHz to 100 kHz. The switching frequency of this DC-DC power converter using IGBT power modules can be realized at 60 kHz. It is proved experimentally by power loss analysis that the more the switching frequency increases, the more the proposed DC-DC power converter can achieve a higher control response performance and size miniaturization. The practical and inherent effectiveness of the new DC-DC converter topology proposed here is actually confirmed for low voltage and large current DC-DC power supplies (32V, 300A) for TIG arc welding applications in industry.

Utility Interactive Solar Power Conditioner with Zero Voltage Soft Switching High frequency Sinewave Modulated Inverter Link

  • Terai H.;Sumiyoshi S.;Kitaizumi T.;Omori H.;Ogura K.;Chandhaket S.;Nakaoka M.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.668-672
    • /
    • 2001
  • The utility interactive sinewave modulated inverter for the solar photovoltaic (PV) power conversion and conditioning with a new high frequency pulse modulated link is presented for domestic residential applications. As compared with the conventional full-bridge hard switching PWM inverter with a high frequency AC link, the simplest single-ended quasi-resonant soft switching sinewave modulated inverter with a duty cycle pulse control is implemented, resulting in size and weight reduction and low-cost. This paper presents a prototype circuit of the single-ended zero voltage soft switching sinewave inverter for solar power conditioner and its operating principle. In addition, this paper proposes a control system to deliver high quality output current. Major design of each component and the power loss analysis under actual power processing is also discussed from an experimental point of view. A newly developed interactive sinewave power processor which has $92.5\%$ efficiencty at 4kW output is demonstrated. It is designed 540mm-300mm-125mm in size, and 20kg in weight.

  • PDF

Bidirectional High-Frequency Link Inverter with Deadbeat Control

  • Salam, Zainal
    • Journal of Power Electronics
    • /
    • 제9권5호
    • /
    • pp.726-735
    • /
    • 2009
  • This paper presents a Bidirectional High-Frequency Link (BHFL) inverter that utilizes the Deadbeat controller. The main features of this topology are the reduced size of the inverter and fewer power switches. On the secondary side of the transformer, the active rectifier employs only two power switches, thus reducing switching losses. Using this configuration, the inverter is capable of carrying a bidirectional power flow. The inverter is controlled by a Deadbeat controller, which consists of the inner current loop, outer voltage loop and a feedforward controller. Additional disturbance decoupling networks are employed to improve the system's robustness towards load variations. A 1-kVA prototype inverter has been constructed and the Deadbeat control algorithm is experimentally verified. The experimental results show that the inverter has high efficiency (91%) with low steady state output voltage total harmonics distortion (1.5%).

Vector Network Analysis Using a One-Path, Frequency-Multiplied Photonic Link

  • Lee, Dong-Joon;Kwon, Jae-Yong;Kang, Jin-Seob;Whitaker, John F.
    • Journal of electromagnetic engineering and science
    • /
    • 제10권4호
    • /
    • pp.282-289
    • /
    • 2010
  • A simplified, practical vector network analyzer (VNA) that uses mature radio-over-fiber technology has been designed and demonstrated. The measurement concept allows the full S-parameters of a microwave device (or antenna) to be obtained while minimizing the detrimental effects of electrical cables, which are replaced with a photonic link. A variety of high-frequency light modulation schemes with frequency sweeping capabilities are presented to realize a one-path (single, forward), frequency-multiplied optical link for VNA applications. Using the photonic one-path link, full two-port S-parameters have been extracted based on five-term error modeling, which has half the error terms compared with the standard duplex configuration. The S-parameters of a microwave filter and antenna measured using frequency-multiplied optical links are found to be in good agreement with those obtained using a conventional VNA.

High-Frequency Flyback Transformer Linked PWM Power Conditioner with An Active Switched Capacitor Snubber

  • Mun, Sang-Pil;Kim, Soo-Wook;Joo, Seok-Min;Park, Young-Jun
    • 조명전기설비학회논문지
    • /
    • 제22권7호
    • /
    • pp.7-15
    • /
    • 2008
  • A single active capacitor snubber-assisted soft-switching sinewave pulse modulation utility-interactive power conditioner with a three-winding flyback high frequency transformer link and a bidirectional active power switch in its secondary side has been proposed. With the aid of the switched-capacitor quasi-resonant snubber cell, the high frequency switching devices in the primary side of the proposed DC-to-AC sinewave power inverter can be turned-off with ZVS commutation. In addition to this, the proposed power conditioner in the DCM can effectively take the advantages of ZCS turn-on commutation. Its output port is connected directly to the utility AC power source grid. At the end, the prototype of the proposed HF-UPC is built and tested in experiment. Its power conversion conditioning and processing circuit with a high frequency flyback transformer link is verified and the output sinewave current is qualified in accordance with the power quality guidelines of the utility AC interactive power systems.