• Title/Summary/Keyword: High fracture toughness

검색결과 413건 처리시간 0.024초

소형펀치시험과 유한요소해석을 이용한 A53B 탄소강 파손 배관의 강도 평가 (Strength Evaluation of A Failed A53B Carbon Steel Pipe with Small Punch Test and Finite Element Analysis)

  • 이준원;김만원;신규인;박재학
    • 한국안전학회지
    • /
    • 제23권1호
    • /
    • pp.1-11
    • /
    • 2008
  • In this study, small punch test and tensile test were performed with specimens directly machined from an ASTM A53 grade B carbon steel pipe at which an explosion accident was occurred in the Heavy Oil Unit. Main damage mechanism of the pipe was known as a high temperature hydrogen attack(HTHA). Effects of HTHA on the mechanical strength change of the A53B steel were studied in detail. Small punch test results have showed that maximum reaction forces, SP energy and ductility were decreased at hydrogen attacked part of the pipe compared with sound part of the pipe. Yield strength and tensile ultimate strength were calculated with the obtained small punch test curve results using different methods and compared the estimation methods. Small punch test simulation has been also performed with the finite element method and then mechanical strength, equivalent strain and fracture toughness were calculated with the obtained numerical analysis results. It was shown that the fracture toughness data calculated from small punch equivalent energy obtained by the finite element analysis for SP test was very low at the hydrogen attacked part.

단일공정으로 WC 및 치밀한 WC-10 vol.%Co 초경재료의 제조 및 기계적 성질 (One-Step Synthesis of WC and Dense WC-10 vol.%Co Hard Materials and Their Mechanical Properties)

  • 김환철;오동영;정정웅;송인진
    • 한국분말재료학회지
    • /
    • 제10권2호
    • /
    • pp.108-117
    • /
    • 2003
  • WC and dense WC-10 vol%Co materials with grain size of~1${\mu}m$ were synthesized by high-frequency induction heated combustion synthesis (HFIHCS) method in one step from elemental powders of W, C and Co within several minutes. Simultaneous combustion synthesis and densification were accomplished under the combined effects of an induced current and mechanical pressure. In the absence of cobalt additive, WC can be formed, but its relative density was low (about 73%) under simultaneous application of a 60 MPa pressure and the induced current. However, in the presence of 10 vol.%Co, the relative density increased to 99% under the same experimental condition. The percentages of the total shrinkage occurring before and during the synthesis reaction of WC-10 vol.%Co were 5% and 51%, respectively. The fracture toughness and hardness values of WC-10 vol.%Co were 10 MPa . m$^{1/2}$ and 1840 kg/$mm^2$, respectively.

고온 재질 열화도를 반영한 CrMoV 터빈로터의 재료 위험도 및 잔여수명 평가 (Assessment of Material Risk and Residual Life of CrMoV Turbine Rotor Considering High Temperature Material Degradation)

  • 마영화;이진상;윤기봉
    • 한국안전학회지
    • /
    • 제21권4호
    • /
    • pp.33-41
    • /
    • 2006
  • Material degradation should be considered to assess integrity and residual life of high temperature equipments. However, the property data reflecting degradation are not sufficient for practical use. In this study measuring properties for 1Cr-1Mo-0.25V forging steel generally used for turbine rotor was carried out. Degradation was simulated by isothermal ageing. heat treatment and variation of microstructure was observed. Mechanical properties such as tensile strength, impact energy, hardness and fracture toughness were measured. Assuming a semi-elliptical surface crack at the bore hole in a turbine rotor, material risk was estimated by using the aged material property data obtained in this study. Safety margin was decreased and life of the rotor was exhausted. This procedure can be used in assessing the residual life of a turbine rotor due to material degradation.

Synthesis of Dense $WSi_2\;and\;WSi_2-xvol.%SiC$ composites by High- Frequency Induction Combustion and Its Mechanical Properties

  • Oh Dong-Young;Kim Hwan-Cheol;Yoon Jin-Kook;Shon In-Jin
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2004년도 International Symposium on Powder Materials and Processing
    • /
    • pp.94-95
    • /
    • 2004
  • Using the high-frequency induction heated combustion method, the simultaneous synthesis and densification of $WSi_2-xvol.%SiC$ (x=0, 10, 20, 30) composites was accomplished using elemental powders of W, Si and C. A complete synthesis and densification of the materials was achieved in one step within a duration of 2 min. The relative density of the composite was up to 97% for the applied pressure of 60MPa and the induced current. The average grain size of $WSi_2$ are 6.9, 6.1, and $5.0{\mu}m$, respectively. The hardness and the fracture toughness increases with increasing SiC content. The maximum values for the hardness and fracture toughness are $1840kg/mm^2\;and\;5.1MPa{\cdot}m^{1/2}\;at\;WSi_2-30vol.%SiC$.

  • PDF

Fabrication of Ultra fine WC-Ni Hard Materials by Rapid Sintering Process

  • Kim Hwan-Cheol;Oh Dong-Young;Shon In-Jin
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2004년도 International Symposium on Powder Materials and Processing
    • /
    • pp.98-99
    • /
    • 2004
  • (1) Using high-frequency induction heating sintering and spark plasma sintering method, the densification of WC-Ni hard materials was accomplished using ultra fine power of Ni and WC. (2) Nearly fully dense WC-Ni could be obtained within 1 min. (3) Relative density and mechanical properties of WC-Ni obtained by HFIHS were high than those obtained by SPS. And WC grain size made by HFIHS was smaller than that made by SPS. (4) The fracture toughness and hardness values of WC-8Ni, WC-10Ni, and WC-12Ni made by HFIHS were $13MPa{\cdot}m^{1/2}\;and\;1950kg/mm^2,\;13.5Mpa{\cdot}m^{1/2}\;and\;1810kg/mm^2,\;14.4MPa{\cdot}m^{1/2}\;and\;1690kg/mm^2$, respectively for 60MPa and an induced current for 90% output of total capacity, 15KW. (5) The fracture toughness and hardness values of WC-8Ni, WC-10Ni, and WC-12Ni made by SPS were $12.2MPa{\cdot}m^{1/2}\;and\;1796kg/mm^2,\;12.9MPa{\cdot}m^{1/2}\;and\;1725kg/mm^2,\;13.6MPa{\cdot}m^{1/2}\;and\;1597kg/mm^2$, respectively for 60MPa and the electric current of 2500 A

  • PDF

고변형속도 조건에서 섬유 혼합비가 하이브리드 섬유보강 시멘트복합체의 인장특성에 미치는 영향 (Fiber blending Ratio Effect on Tensile Properties of Hybrid Fiber Reinforced Cement-based Composites under High Strain Rate)

  • 손민재;김규용;이보경;이상규;김경태;남정수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 추계 학술논문 발표대회
    • /
    • pp.147-148
    • /
    • 2017
  • In this study, the tensile properties of mono and hybrid fiber reinforced cement-based composite according to fiber blending ratio under the high strain rate was evaluated. Experimental results, the HSF1.5PVA0.5 shown the highest tensile strength because the PVA fiber suppressed the micro cracks in the matrix around the hooked steel fiber and improved the pull-out resistance of hooked steel fiber. Thus, DIF of strain capacity and fracture toughness of HSF1.5PVA were greatly improved. Also, the fracture toughness was greatly improved because the tensile stress was slowly decreased after the peak stress by improvement of the pull-out resistance of hooked steel fiber at strain rate 101/s.

  • PDF

$Si_3N_4$-Zr(Y)$O_2$ 복합체의 열처리에 따른 상분석 및 파괴인성 (Phase Analysis and Fracture Toughness of $Si_3N_4$-Zr(Y)$O_2$ Composites after Heat Treatment)

  • 김재룡;김종희
    • 한국세라믹학회지
    • /
    • 제28권1호
    • /
    • pp.53-59
    • /
    • 1991
  • The reaction product between Si3N4 and ZrO2 has been studied by heat treatment of Si3N4-Zr(Y)O2 composite in high vacuum(<10-5 torr) and in air at $700^{\circ}C$. ZrN was formed after heat treatment in vacuum and easily oxidized after heat treatment in air. The amount of ZrN is related to the Y2O3 content dissolved in ZrO2. After the heat treatment in air the toughness increased and the spalling due to the oxidation of ZrN in specimen surface was observed. As a result, it is suggested that the formation of ZrN phase in Si3N4-ZrO2 composite enhance the toughness of the composite in an oxidation conditon.

  • PDF

고강도 시멘트 복합체의 강도특성에 미치는 혼합재료의 영향 (An Effect of Blending Materials on the Strength Characteristics of High Strength Cement Composite)

  • 최일규;김정환;한기성
    • 한국세라믹학회지
    • /
    • 제31권3호
    • /
    • pp.330-336
    • /
    • 1994
  • High strength cement composites (W/C=0.1) were prepared by using various blending materials such as SiC whisker and white carbon (hydrated silica: SiO2·nH2O). The effect of various blending materials on the microstructure and strength of the hardened cement paste were investigated in the view of fracture mechanics. The plain specimen showed 101 MPa of flexural strength, 81 GPa of Young's modulus and 1.32 MPam1/2 of fracture toughness. When the blending materials were added to the composites, their values were enhanced to about 110∼138 MPa, 95∼146 GPa and 1.32∼1.87MPam1/2 respectively. The improvement of the mechanical strength for the hardened cement paste may be due to the removal of macropores, the reduction of total porosity, pozzolanic reaction and the increase of various fracture toughening effect.

  • PDF

WC와 Co원료 입자크기 변화에 따른 WC-Co계 초경합금의 특성 변화 (Effect of Variation in Particle Size of WC and Co Powder on the Properties of WC-Co Alloys)

  • 정태주;안선용;백용균
    • 한국세라믹학회지
    • /
    • 제42권3호
    • /
    • pp.171-177
    • /
    • 2005
  • 서로 다른 입자크기를 갖는 WC와 Co 분말 원료를 사용하여 $WC-10\;wt\%$Co 초경합금을 제조하였다. 이로부터 WC와 Co 원로. 입자크기가 제조된 초경합금의 성질에 미치는 영향에 대해 고찰하였다. WC 원료 입자크기가 클수록 제조된 초경합금이 파괴인성이 높고 경도는 낮게 나타나는데, 이러한 경향은 Co 원료 입자크기에 크게 영향 받지 않음을 알 수 있었다. Co 원료 크기의 영향 외에도 Co 원료 크기가 초경합금의 특성에 영향을 주는 것으로 밝혀졌는데, 동일한 WC 원료를 사용하여도 미세한 Co 원료를 사용할 경우, 보다 조대한 WC를 함유하여 인성이 우수한 초경합금을 제조할 수 있었다. 이로부터 Co 원료 입자크기가 초경합금의 미세구조 및 그 특성에 중요한 역할을 함을 알 수 있었다

알루미나-TZP(3Y) 세라믹스 복합체의 제조 및 기계적 특성 (Fabrication and Characterization of Alumina-TZP(3Y) Composite Ceramics)

  • 윤제정;전명표;남산
    • 한국전기전자재료학회논문지
    • /
    • 제28권3호
    • /
    • pp.170-174
    • /
    • 2015
  • Composite ceramics of alumina-TZP(3Y) have good mechanical and electrical properties. So, They have been used as high strength refractory materials and thick film substrates, etc. In this study, Composite ceramics of alumina-TZP(3Y) were fabricated by uniaxial pressing and sintering at 1,400, 1,500, and $1,600^{\circ}C$, and their microstructures and mechanical properties were investigated. As the TZP(3Y) content in composite ceramics increases from 20 wt.% to 80 wt.%, the fracture toughness increases monotonically, which seems to be related to the higher relative density and/or toughening mechanism by means of stabilized tetragonal zirconia phase at room temperature. In contrast to the fracture toughness, Vickers hardness of the composite ceramics shows maximum value (1,938 Hv) at a 40 wt.% of TZP(3Y). The result of Vickers hardness is likely to be due to more dense sintered microstructure of composite ceramics than pure alumina and reinforcement of composite ceramics with TZP(3Y), considering that Vickers hardness of pure $Al_2O_3$ is greater than that of TZP(3Y). It is also shown that the $ZrO_2$ particles are $l^{\circ}Cated$ between $Al_2O_3$ grains and suppress grain growth each other.