• Title/Summary/Keyword: High fracture toughness

Search Result 413, Processing Time 0.03 seconds

Recent Advances in Microstructural Tailoring of Silicon Nitride Ceramics and the Effects on Thermal Conductivity and Fracture Properties

  • Becher Paul F.
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.8 s.279
    • /
    • pp.525-531
    • /
    • 2005
  • Tailoring the microstructure and the composition of silicon nitride ceramics can have profound effects on their properties. Here it is shown that the grain growth behavior, in particular its anisotropy, is a function of the specific additives, which allow one to tune the microstructure from one consisting of more equiaxed grains to one with very elongated grains. Recent studies are discussed that provide an understanding of the atomic level processes by which these additives influence grain shapes. Next the microstructural (and compositional) parameters are discussed that can be used to modify the thermal conductivity, as well as fracture toughness of silicon nitride ceramics. As a result of the open <0001> channels in $\beta-Si_3N_4$, the c-axis conductivity can be exceptionally high. Thus, the formation of elongated c-axis grains, particularly when aligned can result in conductivity values approaching those of AlN ceramics. In addition, the controlled formation of elongated grains can also be used to significantly enhance the fracture toughness. At the same time, both properties are shown to be affected by the composition of the densification additives. Utilizing such understanding, one will be able to tailor the ceramics to achieve the properties desired for specific applications.

Microstructures and Mechanical Properties of Pressureless and Spark Plasma Sintered ZrO2(3 mol%Y2O3) Bodies

  • Shin, Na-Young;Han, Jae-Kil;Lee, Hae-Hyoung;Lee, Byong-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.2 s.273
    • /
    • pp.140-144
    • /
    • 2005
  • The microstructures and mechanical properties of Tetragonal Zirconia Polycrystals (TZP) sintered bodies, which made by pressureless and spark plasma sintering techniques, were investigated using XRD, SEM, and TEM techniques. In the spark plasma sintered samples, the TZP grains were equiaxed type including many sub-grain boundaries regardless of sintering conditions. The biaxial strength of TZP having an average of 80 nm grains in diameter was high in value with 1025 MPa, but fracture toughness showed a low value due to the absence of a fracture toughening mechanism such as transformation toughening. In the Pressureless Sintered (PLSed) samples, the grain size of TZP was strongly dependent on the sintering temperature; i.e., it gradually increased as the sintering temperature increased. The value of fracture toughness increased as the grain size increased by the stress-induced phase transformation and Borne crack deflection.

Local brittle zone of offshore structural steel welds (해양구조용 강재의 국부취화영역에 관한 연구)

  • 김병천;엄정현;이종섭;이성학;이두영
    • Journal of Welding and Joining
    • /
    • v.7 no.2
    • /
    • pp.35-48
    • /
    • 1989
  • This study is concerned with a correlation of microstructure and local brittle zone (LBZ) in offshore structural steel welds. The influence of the LBZ on fracture toughness was investigated by means of simulated heat-affected zone (HAZ) tests as well as welded joint tests. Micromechanical processes involved in void and cleavage microcrack formation were also identified using notched round tensile tests and subsequent SEM observations. The LBZ in the HAZ of a multiphase welded joint is the interstitially reheated coarse grained HAZ, which is influenced by metallurgical factors such as effective grain size, the major matrix structure and the amount of high-carbon martensite-austenite (M-A) constituents. The experimental results indicate that Chirpy energy was found to scale monotonically with the amount of M-A constituents, confirming that the M-A constituent is the major microstructural factor controlling the HAZ toughness. In addition, voids and microcracks are observed to initiate at M-A constituents by the shear cracking process. Thus, the M-A constituent played an important role in initiating the voids and microcracks, and consequently caused brittle fracture.

  • PDF

고강도 및 파괴인성을 갖는 AI-Li-Cu 합금 개발

  • Kim, Song-Hui;Yun, Yeo-Beom;Hwang, Yeong-Hwa;Choe, Chang-U;Hong, Jun-Pyo;Lee, Eung-Jo
    • Korean Journal of Materials Research
    • /
    • v.3 no.3
    • /
    • pp.253-260
    • /
    • 1993
  • High strength and fracture toughness of Al-Li-Cu alloy(2090 Al alloy) have been achieved by the improvement of melting and casting, extrusion and heat treatment techniques. To establish the sucessful process for semi-industrial scale ingot(20Kg) the following areas have been investigated: (1) Improvement of melting and casting techniques for ingot by introducing atmospheric modifications, vacuum and rotary degassing, and deslagging. (2) The effect of heat treatment on mechanical properties (3) Mechanical characterization by tensile test, fracture toughness test and fatigue crack propagation test. High mechanical properties were found to be intimately related with ingot soundness. Tensile strength of final products varied from 534MPa to 566MPa in peak aged condition while elongation/ductility ranged from 9.0% to 11.9%. From the fracture toughness test with using compact tensile specimen, plane strain fracture toughness($K_{Ic}$) appeared to be 39MPa${\surd}$m in peak aged condition and 23MPa${\surd}$ m in underaged condition. When load ratios of 0.1, 0.3 and 0.5 were given ${\Delta}K_{th}$ was 6.0MPa${\surd}$ m, 5.3MPa${\surd}$ m and 4.3MPa${\surd}$ m respectively.

  • PDF

A study on the fatigue fracture characteristics of TMCP high tensile strength steel welds (TMCP 고장력강 용접부의 피로파양 특성에 관한 연구)

  • 김영식;노재충;한명수;김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.47-54
    • /
    • 1988
  • TMCP steel manufactured by controlled rolling followed by accelerated cooling process is known to have extra-ordinary mechanical properties such as tensile strength and toughness. However, there is much uncertainty about the fatigue fracture characteristics of this steel. In this paper, the fatigue fracture behaviour of the TMCP steel in base metal and weldment were inspected through the Dynamic Implant test method. Those results were quantitavely compared with those of the ordinary normalized steel of same strength level. Moreover, the effect of the diffusible hydrogen included in the welded part on the fatigue fracture behaviour were made clear. As the experimental results, the fatigue fracture characteristics of the TMCP steel in case of base metal proved out to be superior to that of the normalized steel. However, the TMCP steel weldment including the diffusible hydrogen appeared to have inferior fatigue characteristics compared with the same conditioned normalized steel weldment.

  • PDF

A study on the Mechanical Properties in High Heat Input Welds of High Strength Steels (大入熱 高張力鋼 熔接部 의 機械的 特性 變化 에 關한 硏究)

  • 김영식;배차헌
    • Journal of Welding and Joining
    • /
    • v.1 no.1
    • /
    • pp.47-55
    • /
    • 1983
  • The mechanical and microstructural properties in high heat input welds of home-made SM 50 high strength steels were investigated and compared with the manual shielded metal arc welds. Also, the fracture toughnesses of the simulated weld-bonds with various thermal cycles were quantatively examined in order to provide the basic data for further development of the high strength steels for high input welding. Main results obtained are as follows. (1) The embrittlement degree and the coarse grained region in high heat input welds appear to be extraordinarily large compared with the manual shielded metal arc welds, while the difference in change of nicrohardness is not so large in both welds. (2) The embrittleness in high heat input weld-bonds is mainly affected by the size of coarse grain rather than the microstructure. (3) The fracture toughness in high heat input weld-bonds can be improved by controlling the cooling rate from 800.deg.C to 500.deg.C rapidly.

  • PDF

Fractographic Analysis of Ceramic Composites by Transmission Electron Microscopy using Surface Replication Technique (표면복제법을 이용한 세라믹 복합재료 파괴현상의 투과전자현미경 분석)

  • Jun, Hyeung-Woo;Kim, Gyeung-Ho;Kim, Byung-Ho
    • Applied Microscopy
    • /
    • v.26 no.4
    • /
    • pp.447-456
    • /
    • 1996
  • Fracture surfaces of materials contain useful information ranging from crack path to the mechanism of fracture. Since limitation of electron transparency requires a sample in the form of thin foil for TEM observations, it is impossible to extract such information directly from the fracture surfaces. In this study, the method of surface replication from the ceramic fracture surface is employed to characterize the process of crack propagation in ceramic matrix composites using TEM analysis. The surface replica from the fracture surface in ceramic materials provides detailed surface morphology and more importantly, loosened particles on the fracture surface are collected. Electron diffraction and chemical composition analyses of these particles reveal crack path in the specimen. Furthermore, one can determine the mode of fracture by observing the fracture surface morphology from the image of replica. Two examples are given to illustrate the potential of the surface replication technique. In the first example, apparent toughness increase in $B_{4}C-Al$ composites at high strain rate is investigated by surface replication to elucidate the mechanism of fracture at different strain rates. The polytypes of SiC formed during the sintering of SiC-AlN composite and their effect on the fracture behavior of SiC-AlN composite are analyzed in the second example.

  • PDF

Influence of Sintering Additives and Temperature on Fabrication of LPS-SiC (액상소결법에 의한 탄화규소 제조시 소결조제와 온도의 영향)

  • JUNG HUN-CHAE;YOON HAN-KI
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.266-270
    • /
    • 2004
  • SiC materials have been extensively studied for high temperature components in advanced energy system and advanced gas turbine because it has excellent high temperature strength, low coefficient of thermal expansion, good resistance to oxidation and good thermal and chemical stability etc. However, the brittle characteristics of SiC such as low fracture toughness and low strain-to fracture still impose a severe limitation on practical applications of SiC materials. For these reasons, SiC/SiC composites can be considered as a promising for various structural materials, because of their good fracture toughness compared with monolithic SiC ceramics. But, high temperature and pressure lead to the degradation of the reinforcing jiber during the hot pressing. Therefore, reduction of sintering temperature and pressure is key requirements for the fabrication of SiC/SiC composites by hot pressing method. In the present work, monolithic Liquid Phase Sintered SiC (LPS-SiC) was fabricated by hot pressing method in Ar atmosphere at $1800^{\circ}C$ under 20MPa using $Al_2O_3,\;Y_2O_3\;and\;SiO_2$ as sintering additives in order to low sintering temperature and sintering pressure. The starting powder was high purity $\beta-SiC$ nano-powder with all average particle size of 30mm. The characterization of LPS-SiC was investigated by means of SEM and three point bending test. Base on the composition of sintering additives-, microstructure- and mechanical property correlation, tire compositions of sintering additives are discussed.

  • PDF

Failure Analysis and Weibull Statistical Analysis according to Impact Test of the Angular Pin for Injection Molding Machines (사출금형기계용 앵귤러핀의 충격시험에 따른 파손분석과 와이블 통계 해석)

  • Kim, Cheol-Su;Nam, Ki-Woo;Ahn, Seok-Hwan
    • Journal of Power System Engineering
    • /
    • v.21 no.3
    • /
    • pp.37-44
    • /
    • 2017
  • In this study, failure analysis of the angular pin for molding machines to aluminum component molding was carried out. SM45C steel was used for the angular pin, it was surface hardened by the induction surface hardening heat treatment. The cross section of damaged angular pin was observed, and micro Vickers hardness value from the fractured part was measured. Brittle fracture was occurred from the fracture surface of angular pin, therefore, impact toughness value was evaluated by V-notch Charpy impact test. It was confirmed that the impact absorption energy was high when was tempered at a high temperature for a long time, and the toughness was slightly increased. Also, 2-parameter Weibull statistical analysis was investigated in order to evaluate the reliability of the measured micro Vickers hardness values and absorbed energy. The micro Vickers hardness and absorbed energy well followed a two-parameter Weibull probability distribution, respectively. The reverse design against angular pin was proposed as possible by using test results.

Evaluation of Fracture Toughness on High Frequency Electric Resistance Welded API 5LB Steel Pipe (API 5LB강관의 고주파전기저항용접부에 관한 파괴인성 평가)

  • 오세욱;윤한기;안계원
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.127-137
    • /
    • 1987
  • The evaluation of the elastic-plastic fracture toughness $J_{1C}$ was performed on the center of weld metal(CWM), the heat affected zone (HAZ) and the base metal (BM) of API 5LB steel pipes welded by the high frequency electric resistance welding. The $J_{1C}$ was evaluated by the JSME R-Curve and JSME SZW methods using the smooth and side-grooved specimens. The results are as follows; (1) The $J_{1C}$ values by the SZW method are overestimated as compared with those by the R-curve method, because the micro-crack is formed as SZW increase with the deformation at SZ after initiation of the ductile crack. (2) The everage of $J_{1C}$ values by the the R-curve and the SZW methods in side-grooved specimens tended to decrease in comparison with smooth specimens 9.42% at CWM, 4.2% at HAZ, 23.2% at BM, respectively. (3) The boundary of the fatigue pre-crack, stretched zone, and dimple regions appeared more clearly in side-grooved specimens, for the slight change of SZW in the direction of the plate thickness, as compared with smooth specimens.

  • PDF